TO.: Reference Sheet NO.: A250201

APPROVAL SHEET

MULTILAYER CERAMIC CAPACITOR

Commercial Grade

High Voltage Type (100V~3000V)

Address: 227,GYEONGGIDONG-RO, NAMSA-EUP, CHEOIN-GU, YONGIN-SI, GYEONGGI-DO, KOREA

Contact: TEL 82-31-332-6441, FAX 82-31-332-7661

Home page: www.samwha.com

* Notice

This sheet is for reference only and is subject to change or be discontinued without notice. Please contact our sales representatives for detailed information.

	< SPECIFICATION SUMMARY >								
SAMWHA Part no.	CS3216C0G332J101NRI								
Туре			General / High voltage type						
Items	Specification	ification Unit Test Conditions							
Capacitance	3.3	nF	Testing Frequency: 1.0 ± 0.1KHz						
Capacitance Tolerance	±5	%	Testing Voltage : 1.0 ± 0.2 Vrms Should be measured at 25 °C						
Dissipation Factor	Max. 0.1	%							
Insulation Resistance	More than 10,000	МΩ	Should be measured with a DC voltage not exceeding rated voltage at 25°C for 2 minutes of charging.						
	3.20 ± 0.30	L (mm)	Capacitance Tolerance Codepage 4/15						
Chip Size	1.60 ± 0.20	W (mm)	Chip sizepage 5/15 Characteristics & Test Methodpage 6/15~9/15						
	1.60 ± 0.20	T (mm)							

DACARA	^+ L	MUSIAN
necora	UI I	Revision

PART NO.		SAMWHA SPEC.	CS3216C0G332J101NRI
----------	--	-----------------	---------------------

REASON	CONTENTS	DATE OF APPROVAL	CHECKED	REMARKS
Initial written	full document	96. 03. 27		
Re-revision of approval document	full document	25. 02. 01		
	Initial written	Initial written full document	Initial written full document 96. 03. 27	Initial written full document 96. 03. 27

General Description

1. General Article

Application Range

These specifications refer to the "Multilayer Ceramic Capacitors" mainly

used in various every products such as home appliances, audio/visual equipment, communication devices, and Etc.

*Caution: Industrial equipment / For the high reliability equipment / LED equipment / Etc.

Please contact sales representatives or product engineers before using the products.

(For details, please referenece "Note" page)

2. General Code

(1) Type Designation

<u>CS</u>	<u>3216</u>	<u>C0G</u>	<u>332</u>	<u>J</u>	<u>101</u>	<u>N</u>	<u>R</u>	Ī
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)

- 1) Multilayer Ceramic Capacitor (Commercial Grade)
- 2) Size Code: This is expressed in tens of a millimeter.

The first two digits are the length, The last two digits are width.

3) Temperautre Coefficient Code

Classification	Code	Temperature Range	Capacitance Tolerance
Class	COG	-55 to +125 ℃	± 30 ppm / ℃
	X5R	-55 to +85℃	± 15 %
	X7R	-55 to +125 ℃	± 15 %
Class II	X7S	-55 to +125 ℃	± 22 %
Class II	X7T	-55 to +125 ℃	+ 22 ~ - 33 %
	X6S	-55 to +105℃	± 22 %
	Y5V	-30 to +85 ℃	+ 22 ~ - 82 %

4) Capacitance Tolerance Code

The nominal Capacitance Value in pF is expressed by three digit numbers.

The first two digits represents significant figures and the last digit denotes the number of zero

ex) 104 = 100000 pF / R denotes decimal / 8R2 = 8.2 pF

5) Capacitance Tolerance Code

Code	В	С	D	F	G	J	K
Tolerance	± 0.1 pF	± 0.25 pF	± 0.5 pF	± 1.0 %	± 2.0 %	± 5.0 %	± 10 %
Code	М	Р	Z	Н	I	U	V

6) Voltage Code

Code	6R3	100	160	250	350	500	101	201	251	501	631	102	202	302
Rate	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC
Voltage	6.3V	10V	16V	25V	35V	50V	100V	200V	250V	500V	630V	1KV	2KV	зку

7) Termination Code

N: Ni-Sn (Nickel-Tin Plate)

A : Ag/Ni-Sn (Ag Epoxy/Nickel-Tin Plate) \rightarrow Soft Termination Type

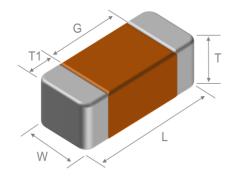
8) Packing Code

R: 7" Reel Type, L: 13" Reel Type, B: Bulk Type

General Description

9) Thickness option

Thickne	ss (mm)	Code	Thickne	ss (mm)	Code	
t	Tolerance (±)	Code	t	Tolerance (±)	Code	
0.30	0.03	Blank	1.30	0.20	E	
0.50	0.05	Blank	1.35	0.20	Н	
0.60	0.10	Α	1.60	0.20	I	
0.80	0.10	В	1.80	0.20	J	
0.85	0.15	В	2.00	0.25	K	
1.00	0.15	E	2.50	0.25	L	
1.10	0.15	E	2.80	0.30	M	
1.15	0.15	E	3.20	0.30	N	
1.25	0.15	E	5.00	0.40	0	


^{*3216} Size \geq 2.2 μ F 100V \Rightarrow T : Tol±0.30

3. Temperature Characteristics

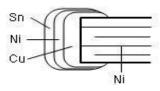
See Page 9 (Specifications and Test Methods: No.7)

4. Constructions and Dimensions

1) Dimensions

(Unit: mm)

		Dimension							
Size Code	EIA Code	Ler	ngth	Wi	dth	T1(min.)	C(min.)		
		L	Tol(±)	W	Tol(±)	1 1(111111.)	G(min.)		
0603	0201	0.60	0.03	0.30	0.03	0.05	0.15		
1005	0402	1.00	0.05	0.50	0.05	0.15	0.30		
1608	0603	1.60	0.15	0.80	0.10	0.20	0.50		
2012	0805	2.00	0.20	1.25	0.15	0.20	0.70		
3216	1206	3.20	0.30	1.60	0.20	0.30	1.20		
3225	1210	3.20	0.40	2.50	0.25	0.30	1.00		
4520	1808	4.50	0.40	2.00	0.25	0.30	1.00		
4532	1812	4.50	0.40	3.20	0.30	0.30	2.20		
5750	2220	5.70	0.50	5.00	0.40	0.30	3.20		


^{*1005} Size \geq 4.7 μ F \Rightarrow L, W, T : Tol±0.15

*1608 Size \geq 10 μ F \Rightarrow W : 0.80±0.15, T : 0.80±0.15

*2012 Size $\geq 10 \mu F \Rightarrow W : 1.25 \pm 0.20, T : 0.85 \pm 0.15$

*3216 Size \geq 47 μ F \Rightarrow W : 1.60±0.30, T : 1.60±0.30

2) Construction of Termination

Spec	cifications and Tes	st Methods (High voltag	e type)				(IEC-60384	Qualified)
No.	Test Item	Specif	ication		Tost Me	othods and	Conditions	
NO.	restitem	Class I	Class II		rest ivie	ethous and	Conditions	
1	Operating Temperature Range	C0G : -55 to +125°C	X7R, X7S, X7T : -55 to +125°C					
2	Dimensions	Within the specified dimension	Using caliper	rs				
					age and Time harge Current		own in the table nA max.	
3	Voltage proof	No defects or abnormalities		DC10	Rated voltage 10V ~ 630V 1V, DC2kV, 1V, DC3.15kV	Test voltage 150% of the rate 120% of the rate	d voltage	Time
				X7R DC1k DC2k DC3k	:V	150% of the rate		1 to 5 sec.
4	Insulation Resistance	More than 10,000 ^{MΩ} or 500 Ω.F (whichever is smaller)		age (<dc500v) age (>=DC500V) ne</dc500v) 		ted Voltage 500±50V in.		
5	Capacitance	Within the specified tolerance		Сар	Testing fr	equency	Testing Voltage	Measure temperature
		C0G Char. :		C0G X7R	1±0.2 ^{Mb} (C 1±0.1 ^{kb} (C 1±0.	≥ 1000pF)	AC 1± 0.2Vrms	25℃
6	Dissipation Factor	30pFmin : Q≥1,000(DF≤0.1%) 30pFmax : Q≥400+20C (DF≤1/(400+20C))	2.5% max	Initial measurement Perform the initial measurement according to Note1 for Class II Measurement after test Take it out and set it for 24±2 ho (Class I) or 24±2 hours (Class II then measure				for Class II it for 24±2 hours
				measured in When cycling	step 3 as a ref the temperatu	ference. ure sequential	ly from step 1 t	ne capacitance hrough 5 the the temperature
				Ste	ep ep	Temper	rature (°C)	
				1 2			5 ± 2 5 ± 3	
7	Temperature characteristic	Temp. Coefficient C0G char. : 0±30ppm/°C	Cap. Change within ±15%	3			5 ± 3 5 ± 2	
	of capacitance	Temp. Range : -55 to +125°C	Temp. Range : -55 to +125 ℃	4			(for C0G)	
				5		25	5 ± 2	
					nge of capacita		compared with	the 25°C value
				Pretreatment Perform a heat treatment at 150 -10, +0°C for 60±5min. and then let sit for 24±2hrs.(Class I), 24±2hrs.(Class II) at room Temperature				

Spec	incations	and res	t Methods (High vo	oltage type)		(IEC-60384 Qualified)
No.	Test	Item		Specification		Test Methods and Conditions
8	Adhesive S Termi		Class I No removal of the terminations	Class		Solder the capacitor to the testing jig(glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. [Fig. 1] 10N(5N:Size 1.6x0.8mm only), 10±1s Speed: 1.0mm/s Glass Epoxy Boar
		Appearance	No defects or abnormalities			Type of Vibration From 10Hz to 55Hz then 10Hz Vibration Time again Total Amplitude 1min.
		Capacitance	Within the specified tolerance			1.5mm Vibration directions and time This motion shall be applied for a period of 2 hours in each 3 mutually
9	Vibration	Dissipation Factor(or Q)	C0G Char.: 30pFmin : Q≥1,000(DF≤0.1%) 30pFmax : Q≥400+20C (DF≤1/ (400+20C))	2.5% max		perpendicular directions (total is 6hours)
			No cracking defects should oc	Fig. 2]		Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. [Fig. 3] Pressurizing speed: 1.0mm/s
10	Substrate bending test		LxX (mm)	Dimension(mm)	d	Flexure=1
			1.6×0.8 1.0 2.0×1.25 1.2 3.2×1.6 2.2 3.2×2.5 2.2 4.5×2.0 3.5 4.5×3.2 3.5	3.0 1.2 4.0 1.65 5.0 2.0 5.0 2.9 7.0 2.4 7.0 3.7	1.0	Capacitance meter 45 45 (in mm) Bending limit 1mm
		Capacitance Change	Within ±5% or ±0.5pF (whichever is larger)	Within ±10%		Pressurizing speed 1mm/sec. Holding time 5±1sec.
11	Solde	rability	95% of the terminations is to be soldered evenly and continuously.			Immerse the capacitor in a solution of ethanol and rosin(25% rosin in weight proportion). Immerse in eutectic solder solution for 2±0.5 sec. at 245±5 °C. Immersing speed: 25±2.5mm/s

Spe	cifications	and Tes	st Methods (High voltag	je type)			(I	EC-60384 C	(ualified)		
No.	Toot	Specification st Item				Test Methods and Conditions					
NO.	vo.		Class II Class II			rest ivie	mous and Co	maitions			
		Appearance	nce No defects which may affect performance		Preheat Tempe Preheat Time Soldering Tem Immersion Tim	p	120 to 1 min. 260±5°	'C			
		Capacitance change	within ±2.5%or ±0.25pF (whichever is larger)	within ±10%	Immersing Spe	eed	10±1se 25±2.5	mm/s			
12	Resistance to Soldering Heat	Dissipation Factor (or Q)	C0G Char.: 30pFmin : Q≥1,000(DF≤0.1%) 30pFmax : Q≥400+20C (DF≤1/(400+20C))	2.5% max	Measurement a		accord Let sit 24±2hr	n the initial meing to Note1 for at room Temps.(Class I), s.(Class II) the	or Class II		
				-DC100V~1KV	*Preheating for	more than 3.2	2×2.5mm Temperature		Time		
		I.R.	More than 10,000 $^{M\Omega}$ or 500 Ω .F	:C≥0.01 <i>µ</i> F:More than 100 ^M Ω. <i>µ</i> F	Step 1		100 to 120°C		1 min		
		I.IX.	(whichever is smaller)	:C<0.01 ^µ F:More than 10,000 ^M Ω -DC2~3KV:More than 1,000 ^M Ω	2		170 to 200 ℃		1 min		
		Appearance	nce No defects which may affect performance		Heat treatment Cycles	S	Shown 5cycles	in the table			
	Rapid change of temperature	Capacitance change	within ±2.5%or ±0.25pF (whichever is larger)	within ±15%	Step	1	2	3	4		
		(or Q) 30p⊢max			Temp (℃)	Min. Operating temp. +0, -3	Room Temp	Max. Operating temp. +3, -0	Room Temp		
13			DC100V~1KV: 2.5% max DC2~3KV : 5%max	(min)		accord	30 ± 3 In the initial meaning to Note1 for	or Class II			
		I.R.	More than 10,000 ^{MΩ} or 500 Ω .F (whichever is smaller)	-DC100V~1KV :C≥0.01 \(\mu^{\vec{1}}\):More than 100\(\mu^{\vec{1}}\):C<0.01 \(\psi^{\vec{1}}\):More than 10,000\(\mu^{\vec{1}}\):DC2~3KV:More than 3,000\(\mu^{\vec{1}}\):	Measurement a	after test		n the final mea	asurement		
		Appearance	No defects which may affect perform	nance	Temperature Humidity			40±2°C 90 to 95%			
		Capacitance change	within ±5% or ±0.5pF (Whichever is larger)	within ±15%	Test Time		500+24	4/-0 hrs.			
14	Damp heat, steady state	Dissipation Factor (or Q)	C0G Char. : C≧30pF : Q≧350 C<30pF : Q≧275+5/2C	5% max	Initial measure		accord Perforr	n the initial me ing to Note1 fo n the final mea ing to Note2	or Class II		
		I.R.	More than $1,000^{M\Omega}$ or 50Ω .F (whichever is smaller)	-DC100V~1KV :C≥0.01 / F:More than 10 M2, / F: :C<0.01 / F:More than 1,000 M2 -DC2~3KV:More than 1,000 M2							

Specifications and Test Methods (High voltage type) (IEC-60384 Qualified) Specification No. **Test Item Test Methods and Conditions** Class I Class II Applied Voltage Shown in the table Appearance No defects which may affect performance Test Time 1.000+48/-0hrs Charge/Discharge current 50mA max. DC100V,630V:Within ±15% within ±3% or ±0.3pF Capacitance DC1KV:Within ±20% change (Whichever is larger) DC2~3KV:Within ±20% Operating Rated voltage Test voltage Temp.Range Rated voltage Rated voltage C0G Char. : Dissipation ≥ DC1KV C≧30pF : Q≧350 C0G 5% max Factor Rated voltage C<30pF : Q≥275+5/2C (or Q) 120% of the rated voltage 15 Endurance <DC1KV DC100V~250V 150% of the rated voltage X7R DC500V~630V 120% of the rated voltage 110% of the rated voltage DC1KV~DC3KV Initial measurement Perform the initial measurement -DC100V~1KV according to Note1 for Class II More than $1,000^{M\Omega}$ or 50Ω .F :C≥0.01 μF:More than 10 MΩ. μF I.R. (whichever is smaller) :C<0.01 µF:More than 1,000 MΩ Measurement after test Perform the final measurement -DC2~3KV:More than 2,000MΩ according to Note2 Applied Voltage Rated Voltage Temperature Appearance No defects which may affect performance 40±2°C Humidity 90 to 95%RH Test Time 500+24/-0 hrs. Capacitance Within ±7.5% or ±0.75pF (whichever Within ±15% change is larger) Initial measurement Perform the initial measurement Humidity according to Note1 for Class II Load Dissipation 16 (Application Measurement after test Perform the final measurement DC250V Factor 200 min. 5% max according to Note2 (or Q) item) 500Ω or 25Ω.F C≥0.01 μF:More than 10 MΩ. μF I.R. (whichever is smaller) C<0.01 µF:More than 1,000 MΩ

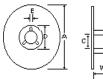
Perform a heat treatment at 150+0,-10℃ for one hour and then let sit for 24±2 hours at room temperature,then measure

Let sit for 24±2 hours at room temperature, then measurement

2.Class II

Perform a heat treatment at 150+0,-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure.

"Following the International standards, the title of each test item is subject to change."

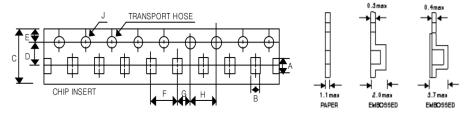

^{*}Note1. Initial Measurement for Class II

^{*}Note2. Measurement after test

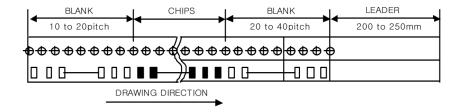
^{1.}Class I

Packing

- (1) Bulk Packing
 - 1 1000 pcs per polybag
 - ② 5 polybags per inner box
 - 3 10 inner boxes per out box
- (2) Reel Packing
 - ① 8~10 Reels per inner box
 - ② 6 inner boxes per out box
- (3) Reel Dimensions

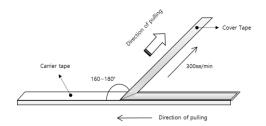

								(Unit : mm)
Mark	Size Code	EIA Code	Α	В	С	D	E	W
7 " Reel	0603~3225	0201~1210	Ф178±2	Ф50Min	Ф13±0.5	Ф21±0.8	2±0.5	10±1.5
7 1000	4520~4532	1808~1812	Ф180+0,-3	Ф60-0,+1	Ф13±0.2	Ф57-0+1	3±0.2	13±0.5
13 " Reel	1005~3225	0402~1210	Ф330±2	Ф70Min	Ф13±0.5	Ф21±0.8	2±0.5	10±1.5

(4) Number of Package


Size Code	EIA Code	7"	13"
Size Code	LIA Code	Quantity (pcs) / Reel	Quantity (pcs) / Reel
CS0603	CC0201	15,000	-
CS1005	CC0402	10,000	50,000
CS1608	CC0603	4,000	15,000
CS2012	CC0805	3,000 ~ 4,000	8,000 ~ 15,000
CS3216	CC1206	2,000 ~ 4,000	6,000 ~ 10,000
CS3225	CC1210	1,000 ~ 3,000	4,000 ~ 10,000
CS4520	CC1808	1,500 ~ 3,000	-
CS4532	CC1812	500 ~ 1,000	1,500 ~ 5,000

Packing

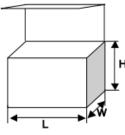
(5) Tape Dimensions



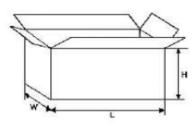
Size Code	EIA Code	Size	Thickness	Α	В	С	D	Е	F	G	Н	J
CS0603	CC0201	0603	all	0.7±0.02	0.4±0.02	8±0.1	3.5±0.05	1.75±0.05	2±0.05	2±0.05	4±0.1	1.55±0.03
CS1005	CC0402	1005	all	1.12±0.03	0.62±0.03	8±0.1	3.5±0.05	1.75±0.05	2±0.05	2±0.05	4±0.1	1.55±0.03
CS1005	CC0402	1005	all	1.12±0.03	0.58±0.03	8±0.1	3.5±0.05	1.75±0.05	2±0.05	2±0.05	4±0.1	1.55±0.03
CS1005	CC0402	1005	all	1.16±0.03	0.66±0.03	8±0.05	3.5±0.05	1.75±0.05	2±0.05	2±0.05	4±0.1	1.55±0.03
CS1608	CC0603	1608	A, B	1.8±0.05	0.95±0.05	8±0.1	3.5±0.05	1.75±0.05	2±0.05	2±0.05	4±0.1	1.55±0.03
CS1608	CC0603	1608	A, B	1.78±0.05	0.92±0.05	8±0.1	3.5±0.05	1.75±0.05	2±0.05	2±0.05	4±0.1	1.55±0.03
CS1608	CC0603	1608	В	1.9±0.05	1.1±0.05	8±0.2	3.5±0.05	1.75±0.1	4±0.1	2±0.05	4±0.1	1.5+0.1
CS1608	CC0603	1608	В	1.9±0.05	1.1±0.05	8±0.1	3.5±0.05	1.75±0.05	4±0.1	2±0.05	4±0.1	1.55±0.03
CS2012	CC0805	2012	Е	2.25±0.1	1.35±0.1	8±0.1	3.5±0.05	1.75±0.1	4±0.1	2±0.05	4±0.05	1.5±0.1
CS2012	CC0805	2012	Е	2.4±0.1	1.6±0.1	8±0.1	3.5±0.05	1.75±0.1	4±0.1	2±0.05	4±0.05	1.5±0.1
CS2012	CC0805	2012	Е	2.25±0.1	1.35±0.1	8±0.1	3.5±0.05	1.75±0.1	4±0.1	2±0.05	4±0.1	1.5+0.1
CS2012	CC0805	2012	Е	2.25±0.05	1.53±0.08	8±0.1	3.5±0.05	1.75±0.1	4±0.1	2±0.05	4±0.1	1.5+0.1
CS2012	CC0805	2012	А	2.3±0.05	1.55±0.05	8±0.1	3.5±0.05	1.75±0.05	4±0.1	2±0.05	4±0.1	1.55±0.03
CS2012	CC0805	2012	В	2.3±0.05	1.55±0.05	8±0.1	3.5±0.05	1.75±0.05	4±0.1	2±0.05	4±0.1	1.55±0.03
CS3216	CC1206	3216	Е	3.5±0.1	1.88±0.1	8±0.1	3.5±0.05	1.75±0.1	4±0.1	2±0.05	4±0.05	1.5±0.1
CS3216	CC1206	3216	I	3.45±0.1	1.75±0.1	8±0.1	3.5±0.05	1.75±0.1	4±0.1	2±0.05	4±0.05	1.5±0.1
CS3216	CC1206	3216	I	3.7±0.1	1.85±0.1	8±0.1	3.5±0.05	1.75±0.1	4±0.1	2±0.05	4±0.05	1.5±0.1
CS3225	CC1210	3225	L	3.58±0.1	2.75±0.1	8±0.1	3.5±0.05	1.75±0.1	4±0.1	2±0.05	4±0.05	1.5±0.1
CS3225	CC1210	3225	J	3.58±0.1	2.85±0.1	8±0.1	3.5±0.05	1.75±0.1	4±0.1	2±0.05	4±0.05	1.5±0.1
CS3225	CC1210	3225	L	3.5±0.1	2.7±0.1	8±0.1	3.5±0.05	1.75±0.1	4±0.1	2±0.05	4±0.05	1.5±0.1
CS4532	CC1812	4532	М	4.9±0.1	3.6±0.1	12±0.1	5.5±0.05	1.75±0.1	8±0.1	2±0.05	4±0.05	1.5±0.1

(6) Cover tape peel-off Strength

- 1. Peeling strength 10 g.f to 70 g.f
- 2. Measurement Method


Packing

(7) Packing Label(* Reference image)



- ① Customer
- 2 Part No.3 Lot No
- ④ Q/ty

(8) Packing Box

Out box drawing

Packing Box Dimensions

(Unit : mm)

Division		Size				
	DIVISION	L	W	Н		
	7 " Reel Box (in 5 reels)	183	65	185		
Inner Box	7 " Reel Box (in 10 reels)	185	135	185		
	13 " Reel Box	330	65	337		
Out Box	7 " Reel Box	430	390	210		
Cut Box	13 " Reel Box	350	350	360		

Caution

▶ Storage Condition

When solderability is considered, capacitor are recommended to be used in 12 months.

MLCC should be stored at 5~40 °C with a relative humidity of 20~70%

High humidity can reduce solderability due to oxidation.

Use the product within 6 months of the outgoing delivery date, and check the packaging if more than 6 months have passed.

It's recommended to use within 1 year to avoid solderability issues from long-term storage.

If over 1 year, verify solderability before use.

▶ The Regulation of Environmental Pollution Materials

Never use materials mentioned below in MLCC products regulated this document.

Pb, Cd, Hg, Cr+6, PBB(Polybrominated biphenyl), PBDE(Polybrominated diphenyl ethers), asbestos

▶ Reflow Soldering

- 1. The sudden temperature change easily causes mechanical damages to ceramic components. Therefore, the preheating procedures should be required for the soldering of ceramic components.
- 2. Please refer to the recommended soldering profiles as shown in figures, and keep the temperature difference ($\triangle T$) within the range recommended in Table 1.

Table 1

Size code (EIA Code)	Temperature Difference
0603, 1005, 1608, 2012, 3216	△T≤150°C
3225 size and over	∆T≤130°C

Recommended Conditions

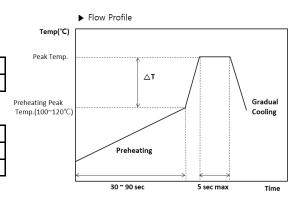
Size code (EIA Code)	Lead Free Solder		
Peak Temperature	240 - 260°C		
Atmosphere	Air or N ₂		

^{*} Compliant Standard JESD22

Temp(°C) Peak Temp. (240 ~ 260) Liquidous Temp.(220) Preheat Temp.(Min 150) Preheat Temp.(Min 150)

▶ Flow Soldering

- 1. The sudden temperature change easily causes mechanical damages to ceramic components. Therefore, the preheating procedures should be required for the soldering of ceramic components.
- 2. Please refer to the recommended soldering profiles as shown in figures, and keep the temperature difference ($\triangle T$) within the range recommended in Table 2.


Table 2

<u> </u>	
Size code	Temperature Difference
1608, 2012, 3216	△T≤150°C

Recommended Conditions

Conditions	Lead Free Solder
Soldering Peak Temperature	250 - 260°C
Atmosphere	Air or N ₂

*Lead Free Solder : Sn-3.0Ag-0.5Cu

Notice

► Land Dimension

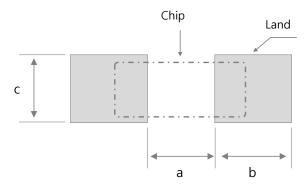


Table . Reflow Soldering Method

Chip size	Chip tol.	а	b	с
[mm]	[mm]	[mm]	[mm]	[mm]
0603	±0.03	0.2~0.25	0.2~0.3	0.25~0.35
0003	±0.05/±0.09	0.23~0.3	0.25~0.35	0.3~0.4
1005	±0.1	0.3~0.5	0.35~0.45	0.4~0.6
1005	±0.2	0.4~0.6	0.4~0.5	0.5~0.7
1608	±0.1	0.6~0.8	0.6~0.7	0.6~0.8
1000	±0.2	0.7~0.9	0.7~0.8	0.8~1.0
2012	±0.1	0.9~1.3	0.6~0.8	1.2~1.4
2012	±0.2	1.0~1.4	0.6~0.8	1.2~1.4
3216	±0.2	1.8~2.0	0.9~1.2	1.5~1.7
3210	±0.3	1.9~2.1	1.0~1.3	1.7~1.9
3225		2.0~2.4	1.0~1.2	1.8~2.3
4532		3.0~3.5	1.2~1.4	2.3~3.0
5750		4.0~4.6	1.4~1.6	3.5~4.8

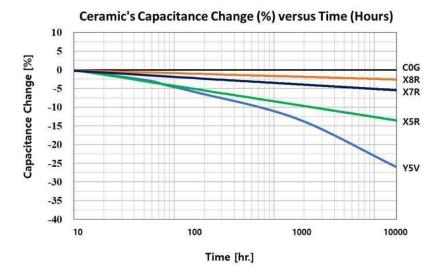
^{*}Please confirm the suitable land dimensions, which are determined through the evaluation of the actual SET and PCB

Note

(1) 'Aging'/'De-aging' behavior of high dielectric constant type MLCCs

(Typically represented by X7R temperature characteristic of which main composition is BaTiO₃)

'Aging' / 'De-aging' Behavior of high dielectric MLCCs Please note that high dielectric type dielectric ceramic capacitors have a "normal" 'aging' behavior / characteristic, that is; their capacitance value decreases with time from its value when it was first manufactured. From that date, the capacitance value begins to decrease at a logarithmic rate defined by:


 $Ct = C_{24} (1 - k \log 10 t)$

where,

 $\label{eq:Ct:Capacitance} Ct: Capacitance value, t hours after the start of 'aging C_{24}: Capacitance value, 24 hours after its manufacture C_{24}: Capacitance value, 24 hours after its manufacture C_{24}: Capacitance value, C_{24}: Capa$

k : Aging constant (capacitance decrease per decade-hour)

t: time, in hours, from the start of 'aging'

The capacitance value can be restored (also known as 'de-aged') by exposing the component to elevated temperatures approaching its curie temperature (approximately 120°C). This 'de-aging' can occur during the component's solder-assembly onto the PCB, during life or temperature cycle testing, or by baking at 150°C for about 1 hour.

(2) Caution of Application

Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.

- (a) Aircraft equipment
 (b) Aerospace equipment
 (c) Undersea equipment
 (d) Power plant equipment
 (e) Medical equipment
 (f) Transportation equipment (vehicles, trains, ships, etc.)
- i) Industrial equipment (Conveyors, Robot equipment, etc)
- Application of similar complexity and/or reliability requirements to the applications listed above