NO. :



# **APPROVAL SHEET**

### MULTILAYER CERAMIC CAPACITOR

Automotive Grade (AEC-Q200 Qualified)

Approved by customer : (signing or stamping here)

| SAMV        | VHA CAPACITOR CO | D., LTD.    |
|-------------|------------------|-------------|
| Prepared by | Checked by       | Approved by |
| AL SE       | for              | 74          |

## 2020. 02. 06.

## SAMWHA CAPACITOR CO., LTD.

Address : 124, BUK-RI, NAMSA-MYUN YOUNGIN-SI, KYUNGKI-DO, KOREA Contact : TEL 82-31-332-6441 , FAX 82-31-332-7661 Home page : www.samwha.com

| <                     | SPECIFIC      |                | N SUMMARY >                                                                                          |
|-----------------------|---------------|----------------|------------------------------------------------------------------------------------------------------|
| SAMWHA Part no.       |               | CQ1            | L608C0G681J101NRB                                                                                    |
| Туре                  |               | MLCC fo        | r Automotive Application                                                                             |
| Items                 | Specification | Unit           | Test Conditions                                                                                      |
| Capacitance           | 680           | pF             | _ Testing Frequency : 1 ±0.1 MHz                                                                     |
| Capacitance Tolerance | ± 5           | %              | Testing Voltage : 1 ±0.2 Vrms                                                                        |
| Dissipation Factor    | Max. 0.1      | %              | ່ Should be measured at 25 ℃.                                                                        |
| Insulation Resistance | Min. 100,000  | MΩ             | Should be measured with a DC voltage not exceeding rated voltage at 25 °C for 2 minutes of charging. |
|                       | 1.60 ±0.15    | L (mm)         | - Capacitance Tolerance Code page 1/9                                                                |
| Chip Size             | 0.80 ±0.10    | <b>W (</b> mm) | Chip size page 2/9                                                                                   |
|                       | 0.80 ±0.10    | <b>T (</b> mm) | Characteristics & Test Method page 3/9~6/9                                                           |

## Contents

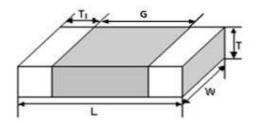
| General Description             | 1/9   |
|---------------------------------|-------|
| Specifications and Test Methods | - 3/9 |
| Packing                         | 7/9   |
| Caution                         | 8/9   |
| Note                            | 9/9   |

|                                           |                                                                                                                                                                                                 |                                                                                     |                                                                                                                                                                                         | STAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DAR                                                          | )                                                                                       |                                                                                                                                          |          | N                     | 0                                                                                                                                                                             | SW                                                                           | ' - Q - 01                         |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------|--|--|
| Enactment:<br>Feb. 1                      | 1, 2010                                                                                                                                                                                         | MULTILAYER CERAMIC CAPACITOR<br>Automotive Grade                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                         |                                                                                                                                          |          | Pa                    | age                                                                                                                                                                           | e 1/9                                                                        |                                    |  |  |
|                                           | CU/ Power<br>Please con<br>hese Autor                                                                                                                                                           | tact sales                                                                          | repres                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | roduc                                                                                   | t eng                                                                                                                                    | ineers   | befo                  | re us                                                                                                                                                                         | ing                                                                          |                                    |  |  |
| 1. General (<br>(1) Type D                | <b>Code</b><br>Designation                                                                                                                                                                      |                                                                                     |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                         |                                                                                                                                          |          |                       |                                                                                                                                                                               |                                                                              |                                    |  |  |
|                                           | <u>CQ</u>                                                                                                                                                                                       | <u>1608</u>                                                                         | <u>C0G</u>                                                                                                                                                                              | <u>681</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J                                                            | <u>101</u>                                                                              | <u>N</u>                                                                                                                                 | <u>R</u> | B                     |                                                                                                                                                                               |                                                                              |                                    |  |  |
|                                           | (1)                                                                                                                                                                                             | (2)                                                                                 | (3)                                                                                                                                                                                     | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (5)                                                          | (6)                                                                                     | (7)                                                                                                                                      | (8)      | (9)                   |                                                                                                                                                                               |                                                                              |                                    |  |  |
| 2) Size                                   | Th                                                                                                                                                                                              | is is expre<br>le first two<br>efficient Co                                         | digits a                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                         | t two                                                                                                                                    | digits   | are wi                | dth.                                                                                                                                                                          |                                                                              |                                    |  |  |
|                                           |                                                                                                                                                                                                 |                                                                                     |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | - turne - D                                                                             | ande                                                                                                                                     |          | Capa                  | oitonoc                                                                                                                                                                       | Tolor                                                                        | ance                               |  |  |
|                                           | Classification                                                                                                                                                                                  |                                                                                     | Code                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temper                                                       | ature R                                                                                 | ange                                                                                                                                     |          | Capa                  | ullance                                                                                                                                                                       |                                                                              | Capacitance Tolerance<br>±30 ppm/℃ |  |  |
|                                           | Classification<br>Class                                                                                                                                                                         |                                                                                     | Code<br>C0G                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temper<br>-55 t                                              | ature R<br>o +125                                                                       | -                                                                                                                                        |          | Capa                  |                                                                                                                                                                               |                                                                              |                                    |  |  |
|                                           |                                                                                                                                                                                                 |                                                                                     |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -55 t                                                        |                                                                                         | °C                                                                                                                                       |          | Сара                  |                                                                                                                                                                               | pm/℃                                                                         |                                    |  |  |
|                                           |                                                                                                                                                                                                 |                                                                                     | C0G                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -55 t<br>-55 t                                               | o +125                                                                                  | ິ<br>ເ<br>ເ                                                                                                                              |          | Capa                  | ±30 p                                                                                                                                                                         | pm/℃<br>5%                                                                   |                                    |  |  |
|                                           |                                                                                                                                                                                                 |                                                                                     | C0G<br>X7R                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -55 t<br>-55 t<br>-55 t                                      | o +125<br>o +125                                                                        | ີ<br>ເດີ<br>ເດີ<br>ເດີ                                                                                                                   |          |                       | ±30 p<br>±15<br>±22                                                                                                                                                           | pm/℃<br>5%                                                                   |                                    |  |  |
|                                           | Class                                                                                                                                                                                           |                                                                                     | COG<br>X7R<br>X7S<br>X7T<br>X6S                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t                    | o +125<br>o +125<br>o +125<br>o +125<br>o +125<br>o +105                                | ີ<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                           |          |                       | ±30 p<br>±15<br>±22<br>•22% ~<br>±22                                                                                                                                          | pm/°C<br>5%<br>2%<br>33%<br>2%                                               |                                    |  |  |
| 4) Capa                                   | Class  <br>Class   <br>acitance Coc                                                                                                                                                             | de(Pico fara                                                                        | C0G<br>X7R<br>X7S<br>X7T<br>X6S<br>X5R<br>ads) :                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t           | o +125<br>o +125<br>o +125<br>o +125<br>o +125<br>o +105<br>to +85                      | ・<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>5<br>3<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                     |          | +                     | ±30 p<br>±15<br>±22<br>22% -<br>±22<br>±15                                                                                                                                    | pm/°C<br>5%<br>2%<br>33%<br>2%                                               |                                    |  |  |
| 4) Capa<br>The<br>The<br>ex) 1            | Class  <br>Class   <br>Acitance Coo<br>nominal Ca<br>first two dig<br>104 = 10000<br>R denotes o<br>8R2 = 8.2 p<br>acitance Tole<br>Code                                                        | de(Pico fara<br>pacitance of<br>pits represe<br>D0 pF<br>decimal<br>oF              | COG<br>X7R<br>X7S<br>X7T<br>X6S<br>X5R<br>ads) :<br>Value in<br>ents signi                                                                                                              | pF is ex<br>ificant fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t           | o +125<br>o +125<br>o +125<br>o +125<br>o +105<br>to +85<br>to +85<br>d by th<br>nd the | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                              | -        | +<br>mbers.           | ±30 p<br>±15<br>±22<br>22% ~<br>±22<br>±15<br>the n<br>Tole                                                                                                                   | pm/°C<br>5%<br>2%<br>2%<br>5%<br>umber                                       |                                    |  |  |
| 4) Capa<br>The<br>The<br>ex) 1            | Class  <br>Class   <br>Class   <br>acitance Coo<br>nominal Ca<br>first two dig<br>104 = 10000<br>R denotes of<br>8R2 = 8.2 p<br>acitance Tole<br>Code<br>B                                      | de(Pico fara<br>pacitance of<br>pits represe<br>D0 pF<br>decimal<br>oF              | COG<br>X7R<br>X7S<br>X7T<br>X6S<br>X5R<br>ads) :<br>Value in<br>ents signi<br>de<br>Tolerance<br>± 0.1 pF                                                                               | pF is ex<br>ificant fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t           | o +125<br>o +125<br>o +125<br>o +125<br>o +105<br>to +85<br>to +85<br>d by th<br>nd the | C<br>C<br>C<br>C<br>C<br>C<br>C<br>Iast o<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | -        | +<br>mbers.           | ±30 p<br>±15<br>±22<br>-22% ~<br>±22<br>±15<br>the n<br>Tole<br>± 2                                                                                                           | pm/°C<br>5%<br>2%<br>2%<br>5%<br>umber<br>rance<br>.0 %                      |                                    |  |  |
| 4) Capa<br>The<br>The<br>ex) 1            | Class  <br>Class   <br>Class   <br>acitance Coc<br>nominal Ca<br>first two dig<br>104 = 10000<br>R denotes c<br>8R2 = 8.2 p<br>acitance Tole<br>Code<br>B<br>C                                  | de(Pico fara<br>pacitance of<br>pits represe<br>D0 pF<br>decimal<br>oF              | COG<br>X7R<br>X7S<br>X7T<br>X6S<br>X5R<br>ads) :<br>Value in<br>ents signi<br>de<br>Tolerance<br>$\pm 0.1 \text{ pF}$<br>$\pm 0.25 \text{ pF}$                                          | pF is explicitly and the second secon | -55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t           | o +125<br>o +125<br>o +125<br>o +125<br>o +105<br>to +85<br>to +85<br>d by th<br>nd the | Code<br>G<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                      | -        | +<br>mbers.           | $\pm 30 \text{ pl}$<br>$\pm 15$<br>$\pm 22$<br>-22%                                                                                                                           | pm/°C<br>5%<br>2%<br>2%<br>5%<br>umber<br>rance<br>.0 %                      |                                    |  |  |
| 4) Capa<br>The<br>The<br>ex) 1            | Class  <br>Class   <br>Class   <br>acitance Coo<br>nominal Ca<br>first two dig<br>104 = 10000<br>R denotes of<br>8R2 = 8.2 p<br>acitance Tole<br>Code<br>B                                      | de(Pico fara<br>pacitance of<br>pits represe<br>D0 pF<br>decimal<br>oF              | C0G<br>X7R<br>X7S<br>X7T<br>X6S<br>X5R<br>ads) :<br>Value in<br>ents signi<br>de<br>Tolerance<br>± 0.1 pF<br>± 0.25 pF<br>± 0.5 pF                                                      | pF is ex<br>ificant fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t           | o +125<br>o +125<br>o +125<br>o +125<br>o +105<br>to +85<br>to +85<br>d by th<br>nd the | C<br>C<br>C<br>C<br>C<br>C<br>C<br>Iast o<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | -        | +<br>mbers.           | $\pm 30 \text{ pl}$<br>$\pm 15 $<br>$\pm 22 $<br>$\pm 22 $<br>$\pm 22 $<br>$\pm 15 $<br>the n<br>Tole<br>$\pm 2 $<br>$\pm 2 $<br>$\pm 1 $                                     | pm/°C<br>5%<br>2%<br>2%<br>5%<br>umber<br>rance<br>.0 %                      |                                    |  |  |
| 4) Capa<br>The<br>The<br>ex) 1<br>5) Capa | Class  <br>Class  <br>Class   <br>acitance Coc<br>nominal Ca<br>first two dig<br>104 = 10000<br>R denotes c<br>8R2 = 8.2 p<br>acitance Tole<br>Code<br>B<br>C<br>D<br>F                         | de(Pico fara<br>pacitance of<br>pits represe<br>D0 pF<br>decimal<br>oF              | COG<br>X7R<br>X7S<br>X7T<br>X6S<br>X5R<br>ads) :<br>Value in<br>ents signi<br>de<br>Tolerance<br>$\pm 0.1 \text{ pF}$<br>$\pm 0.25 \text{ pF}$                                          | pF is ex<br>ificant fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t           | o +125<br>o +125<br>o +125<br>o +125<br>o +105<br>to +85<br>to +85<br>d by th<br>nd the | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                              | -        | +<br>mbers.           | $\pm 30 \text{ pl}$<br>$\pm 15 $<br>$\pm 22 $<br>$\pm 22 $<br>$\pm 22 $<br>$\pm 15 $<br>the n<br>Tole<br>$\pm 2 $<br>$\pm 2 $<br>$\pm 1 $                                     | pm/°C<br>5%<br>2%<br>2%<br>5%<br>umber<br>rance<br>.0 %<br>5 %<br>0 %        |                                    |  |  |
| 4) Capa<br>The<br>The<br>ex) 1<br>5) Capa | Class  <br>Class   <br>Class   <br>acitance Coc<br>nominal Ca<br>first two dig<br>104 = 10000<br>R denotes c<br>8R2 = 8.2 p<br>acitance Tole<br>Code<br>B<br>C<br>D<br>F<br>age Code            | de(Pico fara<br>pacitance '<br>pits represe<br>D0 pF<br>decimal<br>oF<br>erance Coo | COG<br>X7R<br>X7S<br>X7T<br>X6S<br>X5R<br>ads) :<br>Value in<br>ents signi<br>de<br>Tolerance<br>$\pm 0.1 \text{ pF}$<br>$\pm 0.25 \text{ pF}$<br>$\pm 0.5 \text{ pF}$<br>$\pm 1.0 \%$  | pF is ex<br>ificant fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t<br>ures a | o +125<br>o +125<br>o +125<br>o +125<br>o +105<br>to +85<br>d by the<br>nd the          | Code<br>G<br>J<br>K<br>M                                                                                                                 |          | +<br>mbers.<br>enotes | $\pm 30 \text{ pl}$<br>$\pm 15 $<br>$\pm 22 $<br>$\pm 22 $<br>$\pm 22 $<br>$\pm 15 $<br>the n<br>Tole<br>$\pm 2 $<br>$\pm 1 $<br>$\pm 2 $<br>$\pm 1 $<br>$\pm 2 $<br>$\pm 1 $ | pm/°C<br>5%<br>2%<br>2%<br>5%<br>umber<br>rance<br>.0 %<br>5 %<br>0 %<br>0 % | of zero                            |  |  |
| 4) Capa<br>The<br>The<br>ex) 1<br>5) Capa | Class  <br>Class   <br>Class   <br>acitance Coc<br>nominal Ca<br>first two dig<br>104 = 10000<br>R denotes c<br>8R2 = 8.2 p<br>acitance Tole<br>Code<br>B<br>C<br>D<br>F<br>age Code<br>ode 6R3 | de(Pico fara<br>pacitance of<br>pits represe<br>D0 pF<br>decimal<br>oF              | COG<br>X7R<br>X7S<br>X7T<br>X6S<br>X5R<br>ads) :<br>Value in<br>ents signi<br>de<br>Tolerance<br>$\pm 0.1 \text{ pF}$<br>$\pm 0.25 \text{ pF}$<br>$\pm 0.25 \text{ pF}$<br>$\pm 1.0 \%$ | pF is ex<br>ificant fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t<br>-55 t           | o +125<br>o +125<br>o +125<br>o +125<br>o +105<br>to +85<br>to +85<br>d by th<br>nd the | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                              | -        | +<br>mbers.           | $\pm 30 \text{ pl}$<br>$\pm 15 $<br>$\pm 22 $<br>$\pm 22 $<br>$\pm 22 $<br>$\pm 15 $<br>the n<br>Tole<br>$\pm 2 $<br>$\pm 2 $<br>$\pm 1 $                                     | pm/°C<br>5%<br>2%<br>2%<br>5%<br>umber<br>rance<br>.0 %<br>5 %<br>0 %        |                                    |  |  |

- 8) Packing Code
  - R: 7" Reel Type, L: 13" Reel Type, B: Bulk Type

#### 9) Thickness option

| Thickne | ess (mm)     | Cada  | Thickne | ss (mm)      | Code |  |
|---------|--------------|-------|---------|--------------|------|--|
| t       | Tolerance(±) | Code  | t       | Tolerance(±) | Code |  |
| 0.50    | 0.05         | Blank | 1.35    | 0.20         | Н    |  |
| 0.60    | 0.10         | A     | 1.60    | 0.20         | l    |  |
| 0.80    | 0.10         | В     | 1.80    | 0.20         | J    |  |
| 0.85    | 0.15         | В     | 2.00    | 0.25         | К    |  |
| 1.00    | 0.15         | E     | 2.50    | 0.25         | L    |  |
| 1.10    | 0.15         | E     | 2.80    | 0.30         | М    |  |
| 1.15    | 0.15         | E     | 3.20    | 0.30         | Ν    |  |
| 1.25    | 0.15         | E     | 5.00    | 0.40         | 0    |  |
| 1.30    | 0.20         | E     |         |              |      |  |


\*3216 Size  $\geq$ 2.2 $\mu$ F 100V  $\Rightarrow$  T : Tol±0.30

#### 2. Temperature Characteristics

See Page 6/9 (No.21)

#### 3. Constructions and Dimensions

(1) Dimensions



|           |          | Dimension |        |      |        |          |         |  |  |  |
|-----------|----------|-----------|--------|------|--------|----------|---------|--|--|--|
| Size Code | EIA Code | Length    |        | Wi   | dth    | T4(min)  | C(min)  |  |  |  |
|           |          | L         | Tol(±) | W    | Tol(±) | T1(min.) | G(min.) |  |  |  |
| 1005      | 0402     | 1.00      | 0.05   | 0.50 | 0.05   | 0.05     | 0.30    |  |  |  |
| 1608      | 0603     | 1.60      | 0.15   | 0.80 | 0.10   | 0.10     | 0.50    |  |  |  |
| 2012      | 0805     | 2.00      | 0.20   | 1.25 | 0.15   | 0.10     | 0.65    |  |  |  |
| 3216      | 1206     | 3.20      | 0.30   | 1.60 | 0.20   | 0.15     | 1.00    |  |  |  |
| 3225      | 1210     | 3.20      | 0.40   | 2.50 | 0.25   | 0.15     | 1.05    |  |  |  |
| 4520      | 1808     | 4.50      | 0.40   | 2.00 | 0.25   | 0.20     | 1.50    |  |  |  |
| 4532      | 1812     | 4.50      | 0.40   | 3.20 | 0.30   | 0.20     | 1.50    |  |  |  |
| 5750      | 2220     | 5.70      | 0.50   | 5.00 | 0.40   | 0.30     | 1.85    |  |  |  |

\*3216 Size  $\geq$ 2.2 $\mu$ F 100V  $\Rightarrow$  L, W : Tol±0.30

#### (2) Construction of Termination



(Unit : mm)

3/9

| Spo                                            | ecificatio                       | ns and                | Test Methods (Fo                                                                                                                        | r Automotive Applica                                              | ations)                                                                                                                                                                                                                           |  |  |  |  |  |
|------------------------------------------------|----------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| No                                             | AEC-                             | Q200                  | Spec                                                                                                                                    | cification                                                        | Test Methods and Conditions                                                                                                                                                                                                       |  |  |  |  |  |
| No.                                            | Test                             | ltem                  | Class I                                                                                                                                 | Class II                                                          | Test Methods and Conditions                                                                                                                                                                                                       |  |  |  |  |  |
| 1                                              | Pre-and Post-<br>Electrical Test |                       |                                                                                                                                         | -                                                                 | -                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                |                                  | Appearance            | No defects which may affect                                                                                                             | performance                                                       |                                                                                                                                                                                                                                   |  |  |  |  |  |
| High<br>2 Temperature<br>Exposure<br>(Storage) |                                  | Capacitance<br>Change | Within ±2.5% or ±0.25pF<br>(Whichever is larger)                                                                                        | Within ±10.0%<br>(*Within ±12.5%)                                 | Tomporatura : Max, operating tomporature (2%)                                                                                                                                                                                     |  |  |  |  |  |
|                                                |                                  | Q/D.F.                | 30pF min.: Q≧1000<br>30pF max.: Q≧400+20×C<br>C: Nominal Capacitance (pF)                                                               | Rated Voltage 16V min.: 0.05 max.<br>10V: 0.075 max.<br>*0.2 max. | Temperature : Max. operating temperature±3 <sup>°</sup> C<br>Maintenance Time : 1000+48/-0 hrs<br>Let sit for 24±2 hours at room temperature, then measure.                                                                       |  |  |  |  |  |
|                                                |                                  | I.R.                  | More than 10,000M $\Omega$ or 500 $\Omega$<br>(Whichever is smaller)                                                                    | £F (*25Ω-F)                                                       |                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                |                                  | Appearance            | No defects which may affect                                                                                                             | performance                                                       | Perform the 1000 cycles according to the four heat treatments                                                                                                                                                                     |  |  |  |  |  |
|                                                |                                  | Capacitance<br>Change | Within ±2.5% or ±0.25pF<br>(Whichever is larger)                                                                                        | Within ±10.0%<br>(*Within ±12.5%)                                 | listed in the following table.<br>Let sit for 24±2 hours at room temperature, then measure.                                                                                                                                       |  |  |  |  |  |
|                                                |                                  |                       | 30pF min.:Q≧1000                                                                                                                        | Rated Voltage 16V min.: 0.05 max.                                 | Step 1 2 3 4                                                                                                                                                                                                                      |  |  |  |  |  |
| 3                                              | Temperature<br>Cycle             | Q/D.F.                | 30pF max.:Q≧400+20×C<br>C: Nominal Capacitance (pF)                                                                                     | 10V: 0.075 max.<br>*0.2 max.                                      | Min.     Max.       Temp.(°C)     operating<br>temp.+0/-3     Room<br>temp.+3/-0                                                                                                                                                  |  |  |  |  |  |
|                                                |                                  |                       |                                                                                                                                         |                                                                   | Time(min)         15±3         1         15±3         1                                                                                                                                                                           |  |  |  |  |  |
|                                                | I.R.                             |                       | More than 10,000M $\Omega$ or 500 $\Omega$                                                                                              | Ω·F (*50Ω·F)                                                      | Initial measurement                                                                                                                                                                                                               |  |  |  |  |  |
|                                                |                                  |                       | (Whichever is smaller)                                                                                                                  |                                                                   | Perform the initial measurement according to Note 1 for Class II                                                                                                                                                                  |  |  |  |  |  |
| 4                                              | Destructive<br>Physical Anal     | ysis                  | No defects or abnormalities                                                                                                             |                                                                   | Per EIA-469                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                |                                  | Appearance            | No defects which may affect                                                                                                             | performance                                                       | Temperature : 25~65°C, Humidity : 80~98%                                                                                                                                                                                          |  |  |  |  |  |
|                                                |                                  | Capacitance<br>Change | Within ±3.0% or±0.30pF<br>(Whichever is larger)                                                                                         | Within ±12.5%                                                     | Cycle Time : 24 hrs/cycle, 10 cycles<br>Let sit for 24±2 hours at room temperature, then measure.                                                                                                                                 |  |  |  |  |  |
| 5                                              | 5 Moisture<br>Resistance         | Q/D.F.                | 30pF min.: Q≧350<br>10pF min. and 30pF max.:<br>Q≧275+5/2xC<br>10pF max.: Q≧200+10xC<br>C: Nominal Capacitance (pF)                     | Rated Voltage 16V min.: 0.05 max.<br>10V: 0.075 max.<br>*0.2 max. | 80-38%, 80-38%, 80-38%,<br>765<br>66<br>55<br>55<br>55<br>55<br>60<br>55<br>55<br>55<br>60<br>60<br>60<br>75<br>55<br>60<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                              |  |  |  |  |  |
|                                                |                                  | I.R.                  | More than 10,000MΩ or 500Ω<br>(Whichever is smaller)                                                                                    | ₽F (*50Ω·F)                                                       | 15<br>10<br>5<br>0<br>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24<br>Time (hrs)                                                                                                                                |  |  |  |  |  |
|                                                |                                  | Appearance            | No defects which may affect                                                                                                             | performance                                                       |                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                |                                  | Capacitance<br>Change | Within ±3.0% or ±0.30pF<br>(Whichever is larger)                                                                                        | Within ±12.5%                                                     | −<br>Temperature : 85±3 ℃<br>Humidity : 80~85%                                                                                                                                                                                    |  |  |  |  |  |
| 6                                              | Biased<br>Humidity               | Q/D.F.                | 30pF min.: Q≧200<br>30pF max.: Q≧100+10/3×C<br>C: Nominal Capacitance (pF)                                                              | Rated Voltage 16V min.: 0.05 max.<br>10V: 0.075 max.<br>*0.2 max. | Applied Voltage : Rated Voltage and 1.3+0.2/-0V<br>Maintenance Time : 1000+48/-0 hrs<br>Let sit for 24±2 hours at room temperature, then measure.                                                                                 |  |  |  |  |  |
|                                                |                                  | I.R.                  | More than 1,000M $\Omega$ or 50 $\Omega$ ·F (Whichever is smaller)                                                                      | (*5Ω·F)                                                           | The charge/discharge current is less than 50mA.                                                                                                                                                                                   |  |  |  |  |  |
|                                                |                                  | Appearance            | No defects which may affect                                                                                                             | performance                                                       | Temperature : Max operating Temp.±3 °C                                                                                                                                                                                            |  |  |  |  |  |
|                                                |                                  | Capacitance<br>Change | Within ±3.0% or ±0.30pF<br>(Whichever is larger)                                                                                        | Within ±12.5%                                                     | Applied Voltage : Rated Voltage × 100%<br>Maintenance Time : 1000+48/-0 hrs                                                                                                                                                       |  |  |  |  |  |
| 7                                              | Operational<br>Life              | Q/D.F.                | 30pF min.:Q $\geq$ 350<br>10pF min. and 30pF max.:<br>Q $\geq$ 275+5/2×C<br>10pF max.: Q $\geq$ 200+10×C<br>C: Nominal Capacitance (pF) | Rated Voltage 16V min.: 0.05 max.<br>10V: 0.075 max.<br>*0.2 max. | Let sit for 24±2 hours at room temperature, then measure.<br>The charge/discharge current is less than 50mA.<br>Initial Measurement for Class II<br>Applied 200% of the rated voltage for one hour at Max operating<br>Temp.±3 °C |  |  |  |  |  |
|                                                |                                  | I.R.                  | More than 1,000M $\Omega$ or 50 $\Omega$ ·F (Whichever is smaller)                                                                      | (*5Ω·F)                                                           | Remove and let sit for 24±2 hours at room temperature, then measure.                                                                                                                                                              |  |  |  |  |  |

4 / 9

| Spe | ecificatio     | ons and               | Test Methods (For                                                    | Automotive Applic                               | ation)                                                                                                                |               |                                          |                                   |                                                                                                                          |
|-----|----------------|-----------------------|----------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|     | AEC-           | -Q200                 | Speci                                                                | fication                                        |                                                                                                                       |               |                                          |                                   |                                                                                                                          |
| No. |                | Item                  | Class                                                                | Class II                                        | Test Methods and Conditions                                                                                           |               |                                          |                                   |                                                                                                                          |
| 8   | External Visua | al                    | No defects or abnormalities                                          |                                                 | Visual inspection                                                                                                     |               |                                          |                                   |                                                                                                                          |
| 9   | Physical Dime  | ension                | Within the specified dimensions                                      |                                                 | Using calipers                                                                                                        |               |                                          |                                   |                                                                                                                          |
|     |                | Appearance            | No defects which may affect                                          | performance                                     | _                                                                                                                     |               |                                          |                                   |                                                                                                                          |
|     |                | Capacitance<br>Change | Within the specified tolerance                                       |                                                 |                                                                                                                       |               |                                          |                                   |                                                                                                                          |
| 10  | Resistance     |                       | 30pF min.: Q≧1000                                                    | Rated Voltage 50V: 0.025 max.<br>25V: 0.03 max. | Der Mill, CTD, 202 Method 245                                                                                         |               |                                          |                                   |                                                                                                                          |
| 10  | to Solvents    | Q/D.F.                | 30pF max.: Q≧400+20×C                                                | 16V: 0.035 max.                                 | Per MIL-STD-202 Method 215                                                                                            |               |                                          |                                   |                                                                                                                          |
|     |                |                       | C: Nominal Capacitance (pF)                                          | 10V: 0.05 max.                                  |                                                                                                                       |               |                                          |                                   |                                                                                                                          |
|     |                |                       | More than 10,000MΩ or 500Ω·l                                         | *0.125 max.<br>= (*500·F)                       | -                                                                                                                     |               |                                          |                                   |                                                                                                                          |
|     |                | I.R.                  | (Whichever is smaller)                                               | ( )                                             |                                                                                                                       |               |                                          |                                   |                                                                                                                          |
|     |                | Appearance            | No defects which may affect                                          | performance                                     |                                                                                                                       |               |                                          |                                   |                                                                                                                          |
|     |                | Capacitance<br>Change | Within the specified tolerance                                       |                                                 | Three shocks in each direction should be applied along 3 mutually perpendicular axes of the test specimen (18 shocks) |               |                                          |                                   |                                                                                                                          |
|     | Mechanical     |                       | 30pF min.:Q≧1000                                                     | Rated Voltage 50V: 0.025 max.<br>25V: 0.03 max. | Test Pulse                                                                                                            |               |                                          |                                   |                                                                                                                          |
| 11  | Shock          | Q/D.F.                | 30pF max.:Q≧400+20×C                                                 | 16V: 0.035 max.                                 | Wave form : Half-sine                                                                                                 |               |                                          |                                   |                                                                                                                          |
|     |                |                       | C: Nominal Capacitance (pF)                                          | 10V: 0.05 max.                                  | Duration : 0.5ms<br>Peak value : 1,500G                                                                               |               |                                          |                                   |                                                                                                                          |
|     |                |                       | Mara (har 40.000MO ar 5000)                                          | *0.125 max.                                     | Velocity change : 4.7m/s                                                                                              |               |                                          |                                   |                                                                                                                          |
|     |                | I.R.                  | More than $10,000M\Omega$ or $500\Omega$ (Whichever is smaller)      | - ("50 <u>0</u> ;F)                             |                                                                                                                       |               |                                          |                                   |                                                                                                                          |
|     |                | Appearance            | No defects or abnormalities                                          |                                                 |                                                                                                                       |               |                                          |                                   |                                                                                                                          |
|     |                | Capacitance<br>Change | Within the specified tolerance                                       | _                                               | The specimens should be subjected to a simple harmonic motion                                                         |               |                                          |                                   |                                                                                                                          |
|     | Vibration      |                       |                                                                      | Rated Voltage 50V: 0.025 max.                   | having a total amplitude of 1.5mm. The entire frequency range of                                                      |               |                                          |                                   |                                                                                                                          |
| 12  |                | Vibration             | Vibration                                                            | Vibration                                       | Vibration                                                                                                             | ion<br>Q/D.F. | 30pF min.:Q≧1000<br>30pF max.:Q≧400+20×C | 25V: 0.03 max.<br>16V: 0.035 max. | 10 to 2,000 Hz and return to 10 Hz should be traversed in 20                                                             |
|     |                |                       |                                                                      |                                                 |                                                                                                                       |               | C: Nominal Capacitance (pF)              | 10V: 0.05 max.                    | minutes. This cycle should be performed 12 times in each of three mutually perpendicular directions (total of 36 times). |
|     |                |                       |                                                                      | *0.125 max.                                     | -                                                                                                                     |               |                                          |                                   |                                                                                                                          |
|     |                | I.R.                  | More than 10,000M $\Omega$ or 500 $\Omega$ ·l (Whichever is smaller) | - (*50Ω+F)                                      |                                                                                                                       |               |                                          |                                   |                                                                                                                          |
|     |                | Appearance            | No defects which may affect                                          | performance                                     |                                                                                                                       |               |                                          |                                   |                                                                                                                          |
|     |                | Capacitance<br>Change | Within the specified tolerance                                       |                                                 | Temperature (Eutectic solder solution) : 260±5 ℃                                                                      |               |                                          |                                   |                                                                                                                          |
|     | Resistance     |                       | 30pF min.:Q≧1000                                                     | Rated Voltage 50V: 0.025 max.<br>25V: 0.03 max. | Dipping Time : 10±1s                                                                                                  |               |                                          |                                   |                                                                                                                          |
| 13  | to Soldering   | Q/D.F.                | 30pF max.:Q≧400+20×C                                                 | 16V: 0.035 max.                                 | Let sit for 24±2 hours at room temperature, then measure.                                                             |               |                                          |                                   |                                                                                                                          |
|     | Heat           |                       | C: Nominal Capacitance (pF)                                          | 10V: 0.05 max.                                  | Initial measurement                                                                                                   |               |                                          |                                   |                                                                                                                          |
|     |                |                       | M                                                                    | *0.125 max.                                     | Perform the initial measurement according to Note 1 for Class II.                                                     |               |                                          |                                   |                                                                                                                          |
|     |                | I.R.                  | More than $10,000M\Omega$ or $500\Omega$ (Whichever is smaller)      | - ("50 <u>0</u> ;F)                             |                                                                                                                       |               |                                          |                                   |                                                                                                                          |
|     |                | Appearance            | No defects which may affect                                          | performance                                     | Perform the 300 cycles according to the two heat treatments listed                                                    |               |                                          |                                   |                                                                                                                          |
|     |                | Capacitance           | Within ±2.5% or ±0.25pF                                              |                                                 | in the following table.                                                                                               |               |                                          |                                   |                                                                                                                          |
|     |                | Change                | (Whichever is larger)                                                | Within ±15%                                     | Transfer Time : 20sec. max.<br>Let sit for 24±2 hours at room temperature, then measure.                              |               |                                          |                                   |                                                                                                                          |
|     | Thermal        |                       | 20nE min :0 > 1000                                                   | Rated Voltage 50V: 0.025 max.<br>25V: 0.03 max. | Step 1 2                                                                                                              |               |                                          |                                   |                                                                                                                          |
| 14  | Shock          | Q/D.F.                | 30pF min.:Q≧1000<br>30pF max.:Q≧400+20×C                             | 16V: 0.035 max.                                 | Temp.(°C) Min. operating Max. operating                                                                               |               |                                          |                                   |                                                                                                                          |
|     |                |                       | C: Nominal Capacitance (pF)                                          | 10V: 0.05 max.                                  | temp.+0/-3 temp+3/-0                                                                                                  |               |                                          |                                   |                                                                                                                          |
|     |                |                       | Mana (han 40.000) 40                                                 | *0.125 max.                                     | Time(min.) 15±3 15±3                                                                                                  |               |                                          |                                   |                                                                                                                          |
|     |                | I.R.                  | More than 10,000M $\Omega$ or 500 $\Omega$ (Whichever is smaller)    | - (^50Ω·F)                                      | Initial measurement                                                                                                   |               |                                          |                                   |                                                                                                                          |
|     |                |                       |                                                                      |                                                 | Perform the initial measurement according to Note 1 for Class II.                                                     |               |                                          |                                   |                                                                                                                          |

5/9

#### Specifications and Test Methods (For Automotive Application)

| N - | AEC-0                               | Q200                       | Specif                                                                                                     | fication                                  |                                                    | Teet Methode and Ora differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|-----|-------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| No. | Test                                |                            | Class                                                                                                      | Class                                     | II                                                 | Test Methods and Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|     |                                     | Appearance<br>Capacitance  | No defects which may affect pe                                                                             | erformance                                |                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|     |                                     | Change                     | Within the specified tolerance                                                                             | Rated Voltage 50V:                        | 0.025 may                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 15  | ESD                                 | Q/D.F.                     | 30pF min.:Q≧1000<br>30pF max.:Q≧400+20xC<br>C: Nominal Capacitance (pF)                                    | 25V:<br>16V:                              | 0.023 max.<br>0.03 max.<br>0.035 max.<br>0.05 max. | Per AEC-Q200-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|     |                                     | I.R.                       | More than 10,000M $\Omega$ or 500 $\Omega$ ·F (Whichever is smaller)                                       |                                           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 16  | Solderability                       |                            | 95% of the terminations is to be s                                                                         | oldered evenly and co                     | ontinuously.                                       | <ul> <li>(a) Preheat at 155 °C for 4 hours, and then immerse the capacito in a solution of ethanol and rosin. Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5 °C.</li> <li>(b) Steam aging for 8 hours, and then immerse the capacitor in a solution of ethanol and rosin. Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5 °C.</li> <li>(c) Steam aging for 8 hours, and then immerse the capacitor in a solution of ethanol and rosin. Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5 °C.</li> <li>(c) Steam aging for 8 hours, and then immerse the capacitor in a solution of ethanol and rosin. Immerse in eutectic solder solution of ethanol and rosin. Immerse in eutectic solder solution for 120±5 seconds at 260±5 °C.</li> </ul> |  |  |  |
|     |                                     | Appearance                 | No defects or abnormalities                                                                                |                                           |                                                    | The capacitance/Q/D.F. should be measured at 25 °C at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     |                                     | Capacitance                |                                                                                                            |                                           |                                                    | frequency and voltage shown in the table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     |                                     | Change                     | Within the specified tolerance                                                                             |                                           |                                                    | Class Capacitance (C) Frequency Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 17  | Electrical<br>Characteriza-<br>tion | Q/D.F.                     | 30pF min.:Q≧1000<br>30pF max.:Q≧400+20xC<br>C: Nominal Capacitance (pF)<br>More than 100.000MΩ or 1.000Ω·F | 16V:                                      | 0.03 max.<br>0.035 max.<br>0.05 max.               | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|     |                                     | I.R. at 25℃<br>I.R. at Max | (Whichever is smaller)                                                                                     | (*50Ω·F) (Whichever                       |                                                    | Should be measured with a DC voltage not exceeding rated voltage at 25 °C and Max. operating temperature for 2 minutes of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     |                                     | operating<br>Temp.         | More than 10,000M $\Omega$ or 100 $\Omega$ -F (Whichever is smaller)                                       | More than 1,000MΩ<br>(*1Ω·F) (Whichever i |                                                    | Applied 250% of the rated voltage for 1~5 seconds<br>The charge/discharge current is less than 50mA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|     |                                     | Dielectric<br>Strength     | No dielectric breakdown or mecha                                                                           | anical breakdown                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|     |                                     | Appearance                 | No defects which may affect pe                                                                             | erformance                                |                                                    | Apply a force in the direction shown in the following figure for<br>60±5 seconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 18  | Board Flex                          | Capacitance<br>Change      | Within ±5.0% or ±0.5pF<br>(Whichever is larger)                                                            | Within the specified                      | tolerance                                          | 45±2<br>45±2<br>45±2<br>Probe to exert bending force<br>Speed: 1.0mm/s<br>Printed circuit board under test<br>Flexure for Class I: 3mm max.<br>for Class II: 2mm max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|     |                                     | Appearance                 | No defects which may affect pe                                                                             | l<br>erformance                           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|     | Terminal                            |                            | Within ±5.0% or ±0.5pF                                                                                     |                                           |                                                    | Apply 18N <sup>1)</sup> force in parallel with the test jig for 60±1 seconds.<br><sup>1)</sup> 10N for 1608(EIA:0603) size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |

6/9

| Na  | AEC                  | AEC-Q200 Spec         |                              | Speci       | fication                                                           |                      |                                                                                                                                   |                                                 | uha da a                                   |                                      |                                             |                                    |  |
|-----|----------------------|-----------------------|------------------------------|-------------|--------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------|---------------------------------------------|------------------------------------|--|
| No. | Test                 | Item                  | Class                        | 1           |                                                                    | Class II             | Test Methods an                                                                                                                   |                                                 |                                            | na Conditions                        |                                             |                                    |  |
|     |                      |                       | The chip endure follow       | wing force. |                                                                    |                      | ,                                                                                                                                 | Apply a force as shown in the following figure. |                                            |                                      |                                             |                                    |  |
|     |                      |                       | Chip Length                  | Thickn      | ness (T)                                                           | Force                | (i) Chip Lengtl<br>Beam Spe                                                                                                       |                                                 |                                            |                                      | ength : 3.2r<br>Speed : 2.5                 |                                    |  |
| 20  |                      |                       | 2.5mm max.                   | T≤0.        | .5mm                                                               | 8N                   | Beam Oper                                                                                                                         | 30.0.311                                        | 11/5                                       | Deam                                 | speeu . 2.5                                 | 1111/5                             |  |
| 20  | Beam Load To         | est                   | 2.01111 1107.                | T>0.        | .5mm                                                               | 20N                  | Ļ                                                                                                                                 |                                                 |                                            |                                      |                                             |                                    |  |
| i.  |                      |                       | 3.2mm min.                   | T<1.        | 25mm                                                               | 15N                  | U U                                                                                                                               | Irc                                             | on Board                                   |                                      |                                             |                                    |  |
|     |                      |                       | 5.211111 11111.              | T≥          | 1.25                                                               | 54.5N                |                                                                                                                                   |                                                 |                                            |                                      | 0.6                                         |                                    |  |
|     | <u> </u>             | 1                     |                              |             |                                                                    |                      |                                                                                                                                   |                                                 |                                            |                                      |                                             |                                    |  |
| I   |                      | Capacitance<br>Change |                              |             | X5R : Witl<br>X7R : Witl<br>X7S : With<br>X6S : With<br>X7T : With | hin ±15%<br>hin ±22% | <ul> <li>(i) Class I</li> <li>The temperatumeasured in sequentially fr</li> <li>within the spe</li> <li>The capacitant</li> </ul> | step 3 as a<br>om step 1<br>cified tole         | a reference<br>I through 5<br>rance for tl | e. When c<br>, the capa<br>ne temper | cycling the t<br>acitance sh<br>rature coef | temperatur<br>hould be<br>ficient. |  |
| I   | Capacitance          | Temperature           | 0±30 ppm/℃                   |             |                                                                    |                      | between the n<br>1, 3 and 5 by t                                                                                                  |                                                 |                                            |                                      |                                             | s in steps                         |  |
| i.  | Temperature          | Coefficient           | 0-00 FF                      |             |                                                                    |                      | Step                                                                                                                              | 1                                               | 2                                          | 3                                    | 4                                           | 5                                  |  |
| 21  | Characteris-<br>tics |                       |                              |             |                                                                    |                      | Temp.(℃)                                                                                                                          | Room<br>temp.±2                                 | Min.<br>operating<br>temp.±3               | Room<br>temp.±2                      | Max.<br>operating<br>temp.±3                | Room<br>temp.±2                    |  |
| I   |                      | Capacitance           | ance Within ±0.2% or ±0.05pF |             |                                                                    |                      | (ii) Class II<br>The ranges of                                                                                                    | •                                               | •                                          | •                                    |                                             |                                    |  |
| i   |                      | Drift                 | (Whichever is larger)        |             |                                                                    |                      | over the temp<br>Max. operating                                                                                                   |                                                 | Ŭ                                          | /lin. opera                          | ating tempe                                 | rature to                          |  |
| i.  |                      |                       |                              |             |                                                                    |                      | Initial measure                                                                                                                   | ement                                           |                                            |                                      |                                             |                                    |  |
|     |                      |                       |                              |             |                                                                    |                      | Perform the in                                                                                                                    | nitial mea                                      | surement a                                 | according                            | to Note 1 f                                 | ior Class                          |  |

In the case of "\*" is specifications for "Thin Layer Large Capacitance Type"

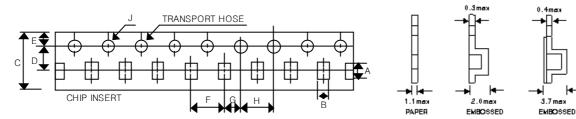
Note 1. Initial Measurement for Class II

Perform a heat treatment at 150+0/-10 °C for one hour, and then let sit for 24±2 hours at room temperature, then measure.

| SW - Q - 01A |  |
|--------------|--|
|--------------|--|

7/9

#### Packing


- (1) Bulk Packing
  - 1 1000 pcs per polybag
  - 2 5 polybags per inner box
  - 3 10 inner boxes per out box
- (2) Reel Packing
  - (1) 8~10 reels per inner box
  - 2 6 inner boxes per out box
- (3) Reel Dimensions

| E                     | Π          |           |           |           |                |                |         |                 | (Ui   | nit : mm) |
|-----------------------|------------|-----------|-----------|-----------|----------------|----------------|---------|-----------------|-------|-----------|
|                       | L I_       | Mark      | Size Code | EIA Code  | Α              | В              | С       | D               | Е     | w         |
| \Q1/î                 | ſ <u>I</u> | 7 " Reel  | 1005~3225 | 0402~1210 | Ф <b>178±2</b> | Ф <b>50Min</b> | Ф13±0.5 | Ф <b>21±0.8</b> | 2±0.5 | 10±1.5    |
| $\setminus$ $\square$ |            |           | 4520~4532 | 1808~1812 | Ф180+0,-3      | Ф60-0,+1       | Φ13±0.2 | Φ57-0+1         | 3±0.2 | 13±0.5    |
| $\sim \rightarrow$    | U w U<br>  | 13 " Reel | 1005~3225 | 0402~1210 | Ф <b>330±2</b> | Ф70Min         | Ф13±0.5 | Ф21±0.8         | 2±0.5 | 10±1.5    |

#### (4) Number of Package

| Size Code | EIA Code | 7"                 | 13"                |  |  |
|-----------|----------|--------------------|--------------------|--|--|
|           |          | Quantity(pcs)/Reel | Quantity(pcs)/Reel |  |  |
| 1005      | 0402     | 10,000             | 50,000             |  |  |
| 1608      | 0603     | 4,000              | 15,000             |  |  |
| 2012      | 0805     | 3,000 ~ 4,000      | 8,000 ~ 15,000     |  |  |
| 3216      | 1206     | 2,000 ~ 4,000      | 6,000 ~ 10,000     |  |  |
| 3225      | 1210     | 1,000 ~ 3,000      | 4,000 ~ 10,000     |  |  |
| 4520      | 1808     | 1,500 ~ 3,000      | _                  |  |  |
| 4532      | 1812     | 500 ~ 1,000        | 1,500 ~ 5,000      |  |  |

#### (5) Tape Dimensions

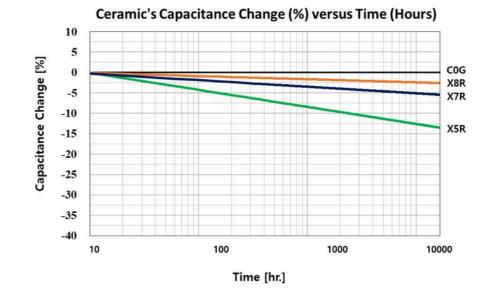


| Size Code | EIA Code | А        | В        | С        | D        | E        | F                  | G       | н       | J       |
|-----------|----------|----------|----------|----------|----------|----------|--------------------|---------|---------|---------|
| 1005      | 0402     | 1.15±0.1 | 0.65±0.1 | 8.0±0.3  | 3.5±0.05 | 1.75±0.1 | 2.0±0.05           | 2.0±0.1 | 4.0±0.1 | 1.5±0.1 |
| 1608      | 0603     | 1.9±0.2  | 1.10±0.2 | 8.0±0.3  | 3.5±0.05 | 1.75±0.1 | 4.0±0.1            | 2.0±0.1 | 4.0±0.1 | 1.5±0.1 |
| 2012      | 0805     | 2.4±0.2  | 1.65±0.2 | 8.0±0.3  | 3.5±0.05 | 1.75±0.1 | 4.0±0.1            | 2.0±0.1 | 4.0±0.1 | 1.5±0.1 |
| 3216      | 1206     | 3.6±0.2  | 2.00±0.2 | 8.0±0.3  | 3.5±0.05 | 1.75±0.1 | 4.0±0.1            | 2.0±0.1 | 4.0±0.1 | 1.5±0.1 |
| 3225      | 1210     | 3.6±0.2  | 2.80±0.2 | 8.0±0.3  | 3.5±0.05 | 1.75±0.1 | 4.0±0.1            | 2.0±0.1 | 4.0±0.1 | 1.5±0.1 |
| 4520      | 1808     | 4.8±0.2  | 2.3±0.2  | 12.0±0.3 | 5.5±0.1  | 1.75±0.1 | 4.0±0.1<br>8.0±0.1 | 2.0±0.1 | 4.0±0.1 | 1.5±0.1 |
| 4532      | 1812     | 4.9±0.2  | 3.6±0.2  | 12.0±0.3 | 5.5±0.1  | 1.75±0.1 | 8.0±0.1            | 2.0±0.1 | 4.0±0.1 | 1.5±0.1 |

| BLAN K               | CHIPS          | BLA        | NK                                                                                                                                                 | LEADER       |
|----------------------|----------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 10 to 20pitch        | •              | 20 to 4    | 0pitch                                                                                                                                             | 200 to 250mm |
| <b>•••••••••••••</b> | •••            | +<br>⊕⊕⊕⊕⊕ | $\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi$ | <del>¢</del> |
|                      |                |            | -0 0 0                                                                                                                                             | ]            |
| DRA                  | WING DIRECTION |            |                                                                                                                                                    |              |

|                                                                                                                                                                                                                                     |                                                                                                                                      | SW - Q - 01A 8 / 9                                                                                                                                        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| aution                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                           |  |  |  |
| <ul> <li>Storage Condition</li> <li>When solderability is considered</li> <li>(1) Temperature: 25°C ± 10°C</li> <li>(2) Relative Humidity: Below 7</li> </ul>                                                                       |                                                                                                                                      | ded to be used in 12 months.                                                                                                                              |  |  |  |
| <ul> <li>The Regulation of Environment<br/>Never use materials mentioned<br/>Pb, Cd, Hg, Cr<sup>+6</sup>, PBB(Polybrock)</li> </ul>                                                                                                 | d below in MLCC products                                                                                                             | regulated this document.<br>olybrominated diphenyl ethers), asbestos                                                                                      |  |  |  |
| Mounting Position<br>Choose a mounting position the<br>imposed on the chip during flee<br>board.                                                                                                                                    |                                                                                                                                      | [Component direction]<br>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓                                                                                            |  |  |  |
|                                                                                                                                                                                                                                     |                                                                                                                                      | [Chip Mounting Close to Board Separation Point]                                                                                                           |  |  |  |
| <ol> <li>The sudden temperature changes damages to ceramic componer procedures should be required components.</li> <li>Please refer to the recommend shown in figures, and keep the within the range recommended Table 1</li> </ol> | hts. Therefore, the preheating<br>for the soldering of ceramic<br>ed soldering profiles as<br>temperature difference( $\triangle$ T) | Recommended Reflow Soldering Profile for<br>Lead Free Solder<br>Infrared Reflow<br>Temperature<br>250±10°C<br>200°C<br>160±10°C<br>140±10°C<br>Preheating |  |  |  |
| Size code (EIA Code)                                                                                                                                                                                                                | Temperature<br>Difference                                                                                                            |                                                                                                                                                           |  |  |  |
| 1005~3216 (0402~1206)                                                                                                                                                                                                               | ∆T≤190 ℃                                                                                                                             | 60~120 sec. 30~60 sec.                                                                                                                                    |  |  |  |
| 3225 (1210)                                                                                                                                                                                                                         | ∆T≤130 ℃                                                                                                                             | Vapor Reflow<br>Temperature                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                     |                                                                                                                                      | 250±10°C<br>160±10°C<br>140±10°C<br>Preheating<br>60~120 sec. 20 sec. max.                                                                                |  |  |  |

|                                                                    | SW - Q - 01A | 9/9 |
|--------------------------------------------------------------------|--------------|-----|
| Note                                                               |              |     |
| 'Aging'/'De-aging' behavior of high dielectric constant type MLCCs |              |     |


(Typically represented by X7R temperature characteristic of which main composition is BaTiO<sub>3</sub>)

'Aging' / 'De-aging' Behavior of high dielectric MLCCs Please note that high dielectric type dielectric ceramic capacitors have a "normal" 'aging' behavior / characteristic, that is; their capacitance value decreases with time from its value when it was first manufactured. From that date, the capacitance value begins to decrease at a logarithmic rate defined by:

#### $C_t = C_{24} (1 - k \log 10 t)$

where,

- $C_t\;$  : Capacitance value, t hours after the start of 'aging'
- $C_{\rm 24}$  : Capacitance value, 24 hours after its manufacture
- k : Aging constant (capacitance decrease per decade-hour)
- t : time, in hours, from the start of 'aging'



The capacitance value can be restored (also known as 'de-aged') by exposing the component to elevated temperatures approaching its curie temperature (approximately 120°C). This 'de-aging' can occur during the component's solder-assembly onto the PCB, during life or temperature cycle testing, or by baking at 150°C for about 1 hour.