NO. :



# **APPROVAL SHEET**

### MULTILAYER CERAMIC CAPACITOR

Automotive Grade (AEC-Q200 Qualified)

Approved by customer : (signing or stamping here)

| SAMWHA CAPACITOR CO., LTD. |                        |      |  |  |  |  |  |  |  |  |
|----------------------------|------------------------|------|--|--|--|--|--|--|--|--|
| Prepared by                | Prepared by Checked by |      |  |  |  |  |  |  |  |  |
| AL SE                      | 74                     | gros |  |  |  |  |  |  |  |  |

## 2023. 02. 10.

## SAMWHA CAPACITOR CO., LTD.

Address : 227,GYEONGGIDONG-RO, NAMSA-EUP, CHEOIN-GU, YONGIN-SI, GYEONGGI-DO, KOREA Contact : TEL 82-31-332-6441 , FAX 82-31-332-7661 Home page : www.samwha.com

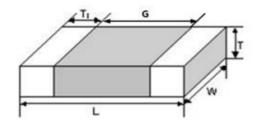
## Contents

| General Description             | 1/9 |
|---------------------------------|-----|
| Specifications and Test Methods | 3/9 |
| Packing                         | 7/9 |
| Caution                         | 8/9 |
| Note                            | 9/9 |

|                                |                                             |                                                 |                                    |                                                 |                         | ST            | AND              | ARD                          | )                 |                 |                     | N              | 0       | SW                | / - Q      | - 014 |
|--------------------------------|---------------------------------------------|-------------------------------------------------|------------------------------------|-------------------------------------------------|-------------------------|---------------|------------------|------------------------------|-------------------|-----------------|---------------------|----------------|---------|-------------------|------------|-------|
| Enactment:<br>Feb.             | 1, 20                                       | 010                                             |                                    | MULTILAYER CERAMIC CAPACITO<br>Automotive Grade |                         |               |                  |                              | ITOR              |                 | Pa                  | age            |         | 1 /               | 9          |       |
| 1. General                     | Code                                        | e                                               |                                    |                                                 |                         |               |                  |                              |                   |                 |                     |                |         |                   |            |       |
| (1) Туре                       | Desię                                       | gnatio                                          | n                                  |                                                 |                         |               |                  |                              |                   |                 |                     |                |         |                   |            |       |
|                                |                                             | <u>C(</u><br>(1)                                |                                    | <b>3216</b><br>(2)                              | <u>X7</u><br>(3)        |               | <b>75</b><br>(4) | <u>K</u><br>(5)              | <u>250</u><br>(6) | <u>N</u><br>(7) | <u>R</u><br>(8)     | <u> </u><br>(9 | )       |                   |            |       |
| 1) Mul                         | Itilayer                                    | Cera                                            | mic C                              | apacit                                          | or (Au                  | tomoti        | ve Gra           | ade)                         |                   |                 |                     |                |         |                   |            |       |
| 2) Size                        |                                             | T<br>T                                          | he fir                             | s expre                                         | digits                  |               |                  |                              |                   | t two           | digits              | are wi         | dth.    |                   |            |       |
| 3) Ter                         | -                                           | sificatio                                       |                                    | ent Co                                          | Code                    |               | Т                | empera                       | ature R           | ande            |                     | Сара           | citance | e Tolera          | ance       |       |
|                                |                                             | ass                                             |                                    |                                                 | COG                     |               |                  | -                            | o +125            | -               |                     |                | ±30 p   |                   |            |       |
|                                |                                             |                                                 |                                    |                                                 | X7R                     |               |                  | -55 to +125℃<br>-55 to +125℃ |                   |                 |                     | ±15%           |         |                   |            |       |
|                                | Class                                       |                                                 |                                    | X7S<br>X7T                                      |                         |               |                  | o +125                       |                   |                 | ±22%<br>+22% ~ -33% |                |         |                   |            |       |
|                                |                                             |                                                 |                                    | X6S                                             |                         |               |                  | -55 to +105℃                 |                   |                 | ±22%                |                |         | _                 |            |       |
| The                            | e first<br>104<br>R de<br>8R2               | two d<br>= 100<br>enotes<br>= 8.2               | igits r<br>000 p<br>decir<br>pF    | nal                                             | ents sig                |               | •                |                              | •                 |                 | -                   |                |         | umber             | of ze      | ero   |
| 5) Ca                          |                                             |                                                 |                                    |                                                 |                         |               |                  |                              |                   | Codo            |                     |                | Tala    | ranaa             |            |       |
|                                |                                             | ode<br>B                                        |                                    |                                                 | Tolerar<br>± 0.1        |               |                  |                              | '                 | Code<br>G       |                     |                |         | erance            |            |       |
|                                |                                             | с<br>С                                          |                                    |                                                 | $\pm 0.1$<br>$\pm 0.25$ |               |                  |                              |                   | J               |                     |                |         | 0 <u>%</u><br>5 % |            |       |
|                                |                                             | D                                               |                                    |                                                 | ± 0.5                   | рF            |                  |                              |                   | K               |                     |                |         | 10 %              |            |       |
|                                | F                                           | F                                               |                                    |                                                 | ± 1.0                   | %             |                  |                              |                   | М               |                     |                | ± 2     | 20 %              |            |       |
| 6) Vol                         | tage (                                      | Code                                            |                                    |                                                 |                         |               |                  |                              |                   |                 |                     |                |         |                   |            |       |
| -,                             |                                             | 6R3                                             | 100                                | 160                                             | 250                     | 350           | 500              | 101                          | 201               | 251             | 501                 | 631            | 102     | 202               | 302        |       |
| ·                              | Code                                        |                                                 |                                    | DC                                              | DC                      | DC            | DC               | DC                           | DC                | DC              | DC                  | DC             | DC      | DC                | DC         |       |
| C                              | Rated                                       | DC                                              | DC                                 |                                                 | 251                     | 251/          |                  |                              | 1 1 1 1 1 1 1 1   |                 |                     |                |         |                   | 1 21/1/    |       |
| 7) Ter                         | Rated<br>oltage<br>minati<br>: Nicke        | DC<br>6.3V<br>on Co<br>el-Tin                   | 10V<br>de<br>Plate                 | -> Sc                                           | 25V<br>oft Ter          | 35V<br>minati | 50∨<br>on Tyj    | 100V                         | 200V              | 250V            | 500V                | 630V           | 1KV     | 2KV               | 3KV        |       |
| 7) Ter<br>N :<br>A :<br>8) Pac | Rated<br>oltage<br>minati<br>Nicke<br>Nicke | DC<br>6.3V<br>on Co<br>el-Tin<br>el-Tin<br>Code | <u>10V</u><br>de<br>Plate<br>Plate | 16V                                             | oft Ter                 | minati        | on Tyj           | be                           |                   |                 | 5007                | 6307           |         | 2KV               | <u>3KV</u> |       |

#### 9) Thickness option

| Thickne | ess (mm)     | Codo  | Thickne | ss (mm)      | Codo |
|---------|--------------|-------|---------|--------------|------|
| t       | Tolerance(±) | Code  | t       | Tolerance(±) | Code |
| 0.50    | 0.05         | Blank | 1.35    | 0.20         | Н    |
| 0.60    | 0.10         | А     | 1.60    | 0.20         | l    |
| 0.80    | 0.10         | В     | 1.80    | 0.20         | J    |
| 0.85    | 0.15         | В     | 2.00    | 0.25         | K    |
| 1.00    | 0.15         | E     | 2.50    | 0.25         | L    |
| 1.10    | 0.15         | E     | 2.80    | 0.30         | М    |
| 1.15    | 0.15         | E     | 3.20    | 0.30         | Ν    |
| 1.25    | 0.15         | E     | 5.00    | 0.40         | 0    |
| 1.30    | 1.30 0.20    |       |         |              |      |


\*3216 Size  $\geq 2.2\mu$ F 100V  $\Rightarrow$  T : Tol±0.30

#### 2. Temperature Characteristics

See Page 6/9 (No.21)

#### 3. Constructions and Dimensions

(1) Dimensions



|           |          | Dimension |        |      |        |                   |         |  |  |  |  |
|-----------|----------|-----------|--------|------|--------|-------------------|---------|--|--|--|--|
| Size Code | EIA Code | Ler       | ngth   | Wi   | dth    | <b>-</b> 44 · · · | G(min.) |  |  |  |  |
|           |          | L         | Tol(±) | W    | Tol(±) | T1(min.)          |         |  |  |  |  |
| 1005      | 0402     | 1.00      | 0.05   | 0.50 | 0.05   | 0.15              | 0.30    |  |  |  |  |
| 1608      | 0603     | 1.60      | 0.15   | 0.80 | 0.10   | 0.20              | 0.50    |  |  |  |  |
| 2012      | 0805     | 2.00      | 0.20   | 1.25 | 0.15   | 0.20              | 0.70    |  |  |  |  |
| 3216      | 1206     | 3.20      | 0.30   | 1.60 | 0.20   | 0.30              | 1.20    |  |  |  |  |
| 3225      | 1210     | 3.20      | 0.40   | 2.50 | 0.25   | 0.30              | 1.00    |  |  |  |  |
| 4520      | 1808     | 4.50      | 0.40   | 2.00 | 0.25   | 0.30              | 1.00    |  |  |  |  |
| 4532      | 1812     | 4.50      | 0.40   | 3.20 | 0.30   | 0.30              | 2.20    |  |  |  |  |
| 5750      | 2220     | 5.70      | 0.50   | 5.00 | 0.40   | 0.30              | 3.20    |  |  |  |  |

\*3216 Size  $\geq$ 2.2 $\mu$ F 100V  $\Rightarrow$  L, W : Tol $\pm$ 0.30

#### (2) Construction of Termination



(Unit : mm)

SW - Q - 01A

3/9

| Sp | ecificatior    | ns and T   | est Methods (For           | Automotive Application | s)                          |
|----|----------------|------------|----------------------------|------------------------|-----------------------------|
| No | AEC            | -Q200      | Spe                        | ecification            | Test Methods and Conditions |
|    | . Test         | ltem       | Class                      | Class                  | Test Methods and Conditions |
|    | Pre-and Post-  | -Stress    |                            |                        |                             |
|    | Electrical Tes | t          |                            |                        | -                           |
|    |                | Appearance | No defects which may affec | t performance          |                             |
|    |                |            |                            |                        | 7                           |

| 1 | Electrical Tes                           |                       |                                                                                                                                         | -                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|---|------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|   |                                          | Appearance            | No defects which may affect                                                                                                             | performance                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|   | High                                     | Capacitance<br>Change | Within ±2.5% or ±0.25pF<br>(Whichever is larger)                                                                                        | Within ±10.0%<br>(*Within ±12.5%)                                 | - Temperature : Max. operating temperature±3℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 2 | Temperature<br>Exposure                  | Q/D.F.                | 30pF min.: Q≥1000<br>30pF max.: Q≥400+20×C<br>C: Nominal Capacitance (pF)                                                               | Rated Voltage 16V min.: 0.05 max.<br>10V: 0.075 max.<br>*0.2 max. | Maintenance Time : 1000+48/-0 hrs<br>Let sit for 24±2 hours at room temperature, then measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|   |                                          | I.R.                  | More than 10,000MΩ or 500Ω<br>(Whichever is smaller)                                                                                    | £·F (*50Ω·F)                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|   |                                          | Appearance            | No defects which may affect                                                                                                             | performance                                                       | Perform the 1000 cycles according to the four heat treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|   |                                          | Capacitance<br>Change | Within ±2.5% or ±0.25pF<br>(Whichever is larger)                                                                                        | Within ±10.0%                                                     | listed in the following table.<br>Let sit for 24±2 hours at room temperature, then measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 3 | Temperature<br>Cycling                   | Q/D.F.                | 30pF min.:Q≧1000<br>30pF max.:Q≧400+20×C<br>C: Nominal Capacitance (pF)                                                                 | Rated Voltage 16V min.: 0.05 max.<br>10V: 0.075 max.<br>*0.2 max. | Step         1         2         3         4           Temp.(°C)         -55+0/-3         25±2         125+3/-0         25±2           Time(min)         15±3         1         15±3         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|   |                                          | I.R.                  | More than 10,000M $\Omega$ or 500 $\Omega$<br>(Whichever is smaller)                                                                    |                                                                   | Initial measurement<br>Perform the initial measurement according to Note 1 for Class II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 4 | Destructive<br>Physical Anal             | ysis                  | No defects or abnormalities                                                                                                             |                                                                   | Per EIA-469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|   |                                          | Appearance            | No defects which may affect                                                                                                             | performance                                                       | Temperature : 25~65°C, Humidity : 80~98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|   | Moisture                                 | Capacitance<br>Change | Within ±3.0% or±0.30pF<br>(Whichever is larger)                                                                                         | Within ±12.5%                                                     | Cycle Time : 24 hrs/cycle, 10 cycles<br>Let sit for 24±2 hours at room temperature, then measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 5 |                                          | Q/D.F.                | 30pF min.: Q≧350<br>10pF min. and 30pF max.:<br>Q≧275+5/2×C<br>10pF max.: Q≧200+10×C<br>C: Nominal Capacitance (pF)                     | Rated Voltage 16V min.: 0.05 max.<br>10V: 0.075 max.<br>*0.2 max. | 70 ← 90-98%,RH → → RH<br>65 ← 0 → 90-98%,RH → → RH<br>55 − 0 → 90-98%,RH → → RH<br>55 − 0 → 0 → 8%,RH → → RH<br>55 − 0 → 0 → 8%,RH → → RH<br>55 − 0 → 0 → 8%,RH → → RH<br>55 − 0 → 8%,RH → RH<br>55 − 0 → 8%,RH → RH<br>56 − 0 → 8%,RH → RH<br>57 − 0 → 8%,RH → RH<br>58 − 0 → 8%,RH → RH<br>58 − 0 → 8%,RH → RH<br>59 − 0 → 8%,RH → RH<br>50 − 0 |  |  |  |  |
|   |                                          | I.R.                  | More than 10,000MΩ or 500Ω<br>(Whichever is smaller)                                                                                    | ₽·F (*50Ω·F)                                                      | 10<br>5<br>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24<br>Time (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|   |                                          | Appearance            | No defects which may affect                                                                                                             | performance                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|   |                                          | Capacitance<br>Change | Within ±3.0% or ±0.30pF<br>(Whichever is larger)                                                                                        | Within ±12.5%                                                     | Temperature : 85±3 ℃<br>Humidity : 80~85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 6 | Humidity<br>Bias                         | Q/D.F.                | 30pF min.: Q $\ge$ 200<br>30pF max.: Q $\ge$ 100+10/3×C<br>C: Nominal Capacitance (pF)                                                  | Rated Voltage 16V min.: 0.05 max.<br>10V: 0.075 max.<br>*0.2 max. | Maintenance Time:1000+48/-0 hrs<br>Let sit for 24±2 hours at room temperature, then measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|   |                                          | I.R.                  | More than 1,000M $\Omega$ or 50 $\Omega$ ·F (Whichever is smaller)                                                                      | (*5Ω·F)                                                           | The charge/discharge current is less than 50mA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|   |                                          | Appearance            | No defects which may affect                                                                                                             | performance                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|   |                                          | Capacitance<br>Change | Within ±3.0% or ±0.30pF<br>(Whichever is larger)                                                                                        | Within ±12.5%                                                     | Temperature : Max. operating temperature±3 °C<br>Applied Voltage : Rated Voltage × 200% (*150%)<br>Maintenance Time : 1000+48/-0 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 7 | High<br>Temperature<br>Operating<br>Life | Q/D.F.                | 30pF min.:Q $\geq$ 350<br>10pF min. and 30pF max.:<br>Q $\geq$ 275+5/2×C<br>10pF max.: Q $\geq$ 200+10×C<br>C: Nominal Capacitance (pF) | Rated Voltage 16V min.: 0.05 max.<br>10V: 0.075 max.<br>*0.2 max. | Let sit for 24±2 hours at room temperature, then measure.<br>The charge/discharge current is less than 50mA.<br>Initial Measurement for Class II<br>Applied 200% of the rated voltage for one hour at 125±3℃.<br>Remove and let sit for 24±2 hours at room temperature, then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|   |                                          | I.R.                  | More than 1,000M $\Omega$ or 50 $\Omega$ ·F (Whichever is smaller)                                                                      | (*5Ω·F)                                                           | measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |



SW - Q - 01A

4 / 9

Specifications and Test Methods (For Automotive Application)

| No. | AEC                             | -Q200                 | Speci                                                                     | fication                                                                                            | Test Methods and Conditions                                                                                                                                                                                                                                     |  |  |  |
|-----|---------------------------------|-----------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| NO. | Test                            | ltem                  | Class                                                                     | Class                                                                                               | rest methods and conditions                                                                                                                                                                                                                                     |  |  |  |
| 8   | External Visu                   | al                    | No defects or abnormalities                                               |                                                                                                     | Visual inspection                                                                                                                                                                                                                                               |  |  |  |
| 9   | Physical Dime                   | ension                | Within the specified dimensions                                           |                                                                                                     | Using calipers                                                                                                                                                                                                                                                  |  |  |  |
|     |                                 | Appearance            | No defects which may affect p                                             | performance                                                                                         |                                                                                                                                                                                                                                                                 |  |  |  |
|     |                                 | Capacitance<br>Change | Within the specified tolerance                                            |                                                                                                     |                                                                                                                                                                                                                                                                 |  |  |  |
| 10  | Resistance<br>to Solvents       | Q/D.F.                | 30pF min.: Q≧1000<br>30pF max.: Q≧400+20×C<br>C: Nominal Capacitance (pF) | Rated Voltage 50V: 0.025 max.<br>25V: 0.03 max.<br>16V: 0.035 max.<br>10V: 0.05 max.<br>*0.125 max. | Per MIL-STD-202 Method 215                                                                                                                                                                                                                                      |  |  |  |
|     |                                 | I.R.                  | More than 10,000M $\Omega$ or 500 $\Omega$ -F (Whichever is smaller)      | (*50Ω·F)                                                                                            |                                                                                                                                                                                                                                                                 |  |  |  |
|     |                                 | Appearance            | No defects which may affect p                                             | performance                                                                                         |                                                                                                                                                                                                                                                                 |  |  |  |
|     | Capacitance<br>Change           |                       | Within the specified tolerance                                            |                                                                                                     | Three shocks in each direction should be applied along 3 mutually perpendicular axes of the test specimen (18 shocks)                                                                                                                                           |  |  |  |
| 11  | Mechanical<br>Shock             | Q/D.F.                | 30pF min.:Q≥1000<br>30pF max.:Q≥400+20×C<br>C: Nominal Capacitance (pF)   | Rated Voltage 50V: 0.025 max.<br>25V: 0.03 max.<br>16V: 0.035 max.<br>10V: 0.05 max.<br>*0.125 max. | Test Pulse<br>Wave form : Half-sine<br>Duration : 0.5ms<br>Peak value : 1,500G<br>Velocity change : 4.7m/s                                                                                                                                                      |  |  |  |
|     |                                 | I.R.                  | More than 10,000M $\Omega$ or 500 $\Omega$ -F (Whichever is smaller)      | - (*50Ω·F)                                                                                          |                                                                                                                                                                                                                                                                 |  |  |  |
|     |                                 | Appearance            | No defects or abnormalities                                               |                                                                                                     |                                                                                                                                                                                                                                                                 |  |  |  |
|     | Capacitar<br>Change             |                       | Within the specified tolerance                                            |                                                                                                     | The specimens should be subjected to a simple harmonic motion                                                                                                                                                                                                   |  |  |  |
| 12  | Vibration                       | Q/D.F.                | 30pF min.:Q≧1000<br>30pF max.:Q≧400+20×C<br>C: Nominal Capacitance (pF)   | Rated Voltage 50V: 0.025 max.<br>25V: 0.03 max.<br>16V: 0.035 max.<br>10V: 0.05 max.<br>*0.125 max. | having a total amplitude of 1.5mm. The entire frequency range of<br>10 to 2,000 Hz and return to 10 Hz should be traversed in 20<br>minutes. This cycle should be performed 12 times in each of three<br>mutually perpendicular directions (total of 36 times). |  |  |  |
|     |                                 | I.R.                  | More than 10,000MΩ or 500ΩF<br>(Whichever is smaller)                     |                                                                                                     |                                                                                                                                                                                                                                                                 |  |  |  |
|     |                                 | Appearance            | No defects which may affect p                                             | performance                                                                                         |                                                                                                                                                                                                                                                                 |  |  |  |
|     |                                 | Capacitance<br>Change | Within the specified tolerance                                            |                                                                                                     | Temperature (Eutectic solder solution) : $260\pm5^{\circ}$ C                                                                                                                                                                                                    |  |  |  |
| 13  | Resistance<br>to Solder<br>Heat | Q/D.F.                | 30pF min.:Q≧1000<br>30pF max.:Q≧400+20×C<br>C: Nominal Capacitance (pF)   | Rated Voltage 50V: 0.025 max.<br>25V: 0.03 max.<br>16V: 0.035 max.<br>10V: 0.05 max.                | Dipping Time : 10±1s<br>Let sit for 24±2 hours at room temperature, then measure.<br>Initial measurement<br>Perform the initial measurement according to Note 1 for Class II.                                                                                   |  |  |  |
|     |                                 | I.R.                  | More than 10,000MΩ or 500ΩF<br>(Whichever is smaller)                     | *0.125 max.<br>- (*50Ω·F)                                                                           |                                                                                                                                                                                                                                                                 |  |  |  |
|     |                                 | Appearance            | No defects which may affect p                                             | performance                                                                                         | Perform the 300 cycles according to the two heat treatments listed                                                                                                                                                                                              |  |  |  |
|     |                                 | Capacitance<br>Change | Within ±2.5% or ±0.25pF<br>(Whichever is larger)                          | Within ±15.0%                                                                                       | in the following table.<br>Transfer Time : 20sec. max.                                                                                                                                                                                                          |  |  |  |
| 14  | Thermal<br>Shock                | Q/D.F.                | 30pF min.:Q≧1000<br>30pF max.:Q≧400+20×C<br>C: Nominal Capacitance (pF)   | Rated Voltage 50V: 0.025 max.<br>25V: 0.03 max.<br>16V: 0.035 max.<br>10V: 0.05 max.<br>*0.125 max. | Let sit for 24±2 hours at room temperature, then measure.           Step         1         2           Temp.(°C)         -55+0/-3         125+3/-0           Time(min.)         15±3         15±3                                                               |  |  |  |
|     |                                 | I.R.                  | More than 10,000M $\Omega$ or 500 $\Omega$ -F<br>(Whichever is smaller)   |                                                                                                     | Perform the initial measurement according to Note 1 for Class II.                                                                                                                                                                                               |  |  |  |

#### Specifications and Test Methods (For Automotive Application)

|                                        | AEC-0                          | Q200                            | Speci                                                                                                               | fication            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|----------------------------------------|--------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| NO.                                    | Test                           |                                 | Class                                                                                                               | Class               | П                                                                                                                                   | Test Methods and Conditions                                                                                                                                                                                                                                                                              |  |  |  |  |
|                                        |                                | ltem                            |                                                                                                                     |                     |                                                                                                                                     |                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                        |                                | Appearance                      | No defects or abnormalities                                                                                         |                     |                                                                                                                                     | <ul> <li>solution for 5+0/-0.5 seconds at 235±5°C.</li> <li>(c) Steam aging for 8 hours, and then immerse the capacitor in solution of ethanol and rosin. Immerse in eutectic solder solution for 120±5 seconds at 260±5°C.</li> <li>The capacitance/Q/D.F. should be measured at 25°C at the</li> </ul> |  |  |  |  |
| Electrical<br>17 Characteriza-<br>tion |                                | Capacitance<br>Change<br>Q/D.F. | Within the specified tolerance<br>30pF min.:Q≧1000<br>30pF max.:Q≧400+20×C<br>C: Nominal Capacitance (pF)           | 16\                 | : 0.025 max<br>: 0.03 max.<br>: 0.035 max<br>: 0.05 max.                                                                            | · Initial measurement                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                        | I.R. at 25℃<br>I.R. at<br>125℃ |                                 | More than 100,000MΩ or 1,000Ω·F<br>(Whichever is smaller)<br>More than 10,000MΩ or 100Ω·F<br>(Whichever is smaller) | (*50Ω·F) (Whichev   | er is smaller<br>Ω or 10Ω·F                                                                                                         | ) Should be measured with a DC voltage not exceeding rated voltage at 25 °C and 125 °C for 2 minutes of charging.                                                                                                                                                                                        |  |  |  |  |
|                                        |                                | Voltage<br>proof                | No dielectric breakdown or mecha                                                                                    | anical breakdown    |                                                                                                                                     | Applied 250% of the rated voltage for 1~5 secondsThe charge/discharge current is less than 50mA.Apply a force in the direction shown in the following figure for                                                                                                                                         |  |  |  |  |
|                                        |                                | Appearance                      | No defects which may affect pe                                                                                      | erformance          |                                                                                                                                     | 60±5 seconds.                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 18 Board Flex                          |                                | Capacitance<br>Change           | Within ±5.0% or ±0.5pF<br>(Whichever is larger)                                                                     | Within the specifie | 45±2<br>45±2<br>Probe to exert bending force<br>Speed: 1.0mm/s<br>Printed circuit board under test<br>Flexure for Class I: 3mm max. |                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                        | Terminal                       |                                 | No defects which may affect pe<br>Within ±5.0% or ±0.5pF                                                            | erformance          |                                                                                                                                     | for Class II: 2mm max.           Apply 18N <sup>1)</sup> force in parallel with the test jig for 60±1 seconds. <sup>1)</sup> 10N for 1608(EIA:0603) size                                                                                                                                                 |  |  |  |  |

SW - Q - 01A

6/9

|     | AEC-                       | Q200                                                | Q200 Specification                               |             |                                                      |          | Tot Matheda and Oracli                                                                                                                  |                                                                    |                                                                                     |                                                                                  |                                                                              |                                                               |  |
|-----|----------------------------|-----------------------------------------------------|--------------------------------------------------|-------------|------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| No. | Test                       | ltem                                                | Class                                            |             | С                                                    | lass II  | Test Methods and Conditions                                                                                                             |                                                                    |                                                                                     |                                                                                  |                                                                              |                                                               |  |
|     |                            |                                                     | The chip endure follo                            | wing force. |                                                      |          | Apply a force as shown in the following figure.                                                                                         |                                                                    |                                                                                     |                                                                                  |                                                                              |                                                               |  |
|     | Chip Length Thickne        |                                                     | ess (T)                                          | Force       | (i) Chip Length<br>Beam Spe                          |          | `                                                                                                                                       | ii) Chip Le                                                        | -                                                                                   |                                                                                  |                                                                              |                                                               |  |
| ~~  |                            |                                                     | 2.5mm max.                                       | T≤0.5       | 5mm                                                  | 8N       | Dealli Sper                                                                                                                             | eu . 0.5m                                                          | 11/5                                                                                | Beam Speed : 2.5mm/s                                                             |                                                                              |                                                               |  |
| 20  | Beam Load                  |                                                     | 2.5000                                           | T>0.5       | 5mm                                                  | 20N      |                                                                                                                                         |                                                                    |                                                                                     | ľ.                                                                               |                                                                              |                                                               |  |
|     |                            |                                                     | 3.2mm min.                                       | T<1.2       | :5mm                                                 | 15N      | Iron Board                                                                                                                              |                                                                    |                                                                                     |                                                                                  |                                                                              |                                                               |  |
|     |                            |                                                     | 3.211111 11111.                                  | T≥1         | .25                                                  | 54.5N    |                                                                                                                                         |                                                                    |                                                                                     |                                                                                  | 0.6                                                                          |                                                               |  |
| 21  | Capacitance<br>Temperature | Capacitance<br>Change<br>Temperature<br>Coefficient | 0±30 ppm/°C                                      |             | X7R : With<br>X7S : With<br>X6S : With<br>X7T : With | hin ±22% | (i) Class I<br>The temperatu<br>measured in s<br>sequentially fr<br>within the spe<br>The capacitan<br>between the n<br>1, 3 and 5 by f | ttep 3 as a<br>om step 7<br>cified tole<br>ace drift is<br>naximum | a reference<br>I through 5<br>rance for t<br>calculatec<br>and minim<br>itance valu | e. When cy<br>5, the capa<br>he temper<br>d by dividir<br>um measu<br>ue in step | ycling the<br>acitance sh<br>rature coef<br>ag the diffe<br>ured value<br>3. | temperature<br>nould be<br>fficient.<br>erences<br>s in steps |  |
|     | Characteris-<br>tics       |                                                     |                                                  |             |                                                      |          | - Step                                                                                                                                  | 1                                                                  | 2                                                                                   | 3                                                                                | 4                                                                            | 5                                                             |  |
|     | 105                        |                                                     |                                                  |             |                                                      |          | Temp.(℃)                                                                                                                                | 25±2                                                               | -55±3                                                                               | 25±2                                                                             | 125±3                                                                        | 25±2                                                          |  |
|     |                            | Capacitance<br>Drift                                | Within ±0.2% or ±0.05pF<br>(Whichever is larger) |             |                                                      |          | <ul> <li>(ii) Class II</li> <li>The ranges of over the temp</li> <li>Initial measure</li> <li>Perform the in</li> </ul>                 | erature ra<br>ement                                                | nge from -                                                                          | 55℃ to 12                                                                        | 25°C.                                                                        |                                                               |  |

In the case of "\*" is specifications for "Thin Layer Large Capacitance Type"

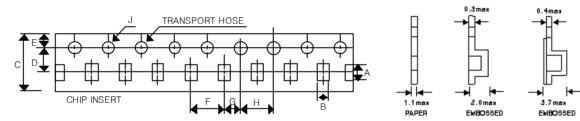
Note 1. Initial Measurement for Class II

Perform a heat treatment at 150+0/-10 °C for one hour, and then let sit for 24±2 hours at room temperature, then measure.

"Following the International standards, the title of each test item is subject to change."

7/9

#### Packing


- (1) Bulk Packing
  - 1 1000 pcs per polybag
  - 2 5 polybags per inner box
  - 3 10 inner boxes per out box
- (2) Reel Packing
  - (1) 8~10 reels per inner box
  - 2 6 inner boxes per out box
- (3) Reel Dimensions

| E                  | пп    |           |           |           |                |                |         |                 | (Ui   | nit : mm) |
|--------------------|-------|-----------|-----------|-----------|----------------|----------------|---------|-----------------|-------|-----------|
|                    |       | Mark      | Size Code | EIA Code  | Α              | В              | С       | D               | Е     | w         |
|                    | ſĪ∐ŀ  | 7 " Reel  | 1005~3225 | 0402~1210 | Ф <b>178±2</b> | Ф <b>50Min</b> | Φ13±0.5 | Ф <b>21±0.8</b> | 2±0.5 | 10±1.5    |
|                    |       |           | 4520~4532 | 1808~1812 | Ф180+0,-3      | Ф60-0,+1       | Φ13±0.2 | Φ57-0+1         | 3±0.2 | 13±0.5    |
| $\sim \rightarrow$ | U w U | 13 " Reel | 1005~3225 | 0402~1210 | Ф <b>330±2</b> | Φ <b>70Min</b> | Φ13±0.5 | Ф21±0.8         | 2±0.5 | 10±1.5    |

#### (4) Number of Package

| Size Code | EIA Code | 7"                 | 13"                |  |
|-----------|----------|--------------------|--------------------|--|
|           |          | Quantity(pcs)/Reel | Quantity(pcs)/Reel |  |
| 1005      | 0402     | 10,000             | 50,000             |  |
| 1608      | 0603     | 4,000              | 15,000             |  |
| 2012      | 0805     | 3,000 ~ 4,000      | 8,000 ~ 15,000     |  |
| 3216      | 1206     | 2,000 ~ 4,000      | 6,000 ~ 10,000     |  |
| 3225      | 1210     | 1,000 ~ 3,000      | 4,000 ~ 10,000     |  |
| 4520      | 1808     | 1,500 ~ 3,000      | _                  |  |
| 4532      | 1812     | 500 ~ 1,000        | 1,500 ~ 5,000      |  |

#### (5) Tape Dimensions



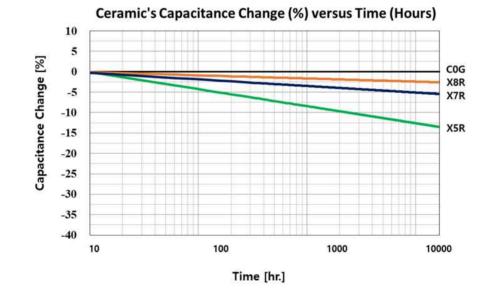
| Size Code | EIA Code | А        | В        | с        | D        | E        | F                  | G       | Н       | J       |
|-----------|----------|----------|----------|----------|----------|----------|--------------------|---------|---------|---------|
| 1005      | 0402     | 1.15±0.1 | 0.65±0.1 | 8.0±0.3  | 3.5±0.05 | 1.75±0.1 | 2.0±0.05           | 2.0±0.1 | 4.0±0.1 | 1.5±0.1 |
| 1608      | 0603     | 1.9±0.2  | 1.10±0.2 | 8.0±0.3  | 3.5±0.05 | 1.75±0.1 | 4.0±0.1            | 2.0±0.1 | 4.0±0.1 | 1.5±0.1 |
| 2012      | 0805     | 2.4±0.2  | 1.65±0.2 | 8.0±0.3  | 3.5±0.05 | 1.75±0.1 | 4.0±0.1            | 2.0±0.1 | 4.0±0.1 | 1.5±0.1 |
| 3216      | 1206     | 3.6±0.2  | 2.00±0.2 | 8.0±0.3  | 3.5±0.05 | 1.75±0.1 | 4.0±0.1            | 2.0±0.1 | 4.0±0.1 | 1.5±0.1 |
| 3225      | 1210     | 3.6±0.2  | 2.80±0.2 | 8.0±0.3  | 3.5±0.05 | 1.75±0.1 | 4.0±0.1            | 2.0±0.1 | 4.0±0.1 | 1.5±0.1 |
| 4520      | 1808     | 4.8±0.2  | 2.3±0.2  | 12.0±0.3 | 5.5±0.1  | 1.75±0.1 | 4.0±0.1<br>8.0±0.1 | 2.0±0.1 | 4.0±0.1 | 1.5±0.1 |
| 4532      | 1812     | 4.9±0.2  | 3.6±0.2  | 12.0±0.3 | 5.5±0.1  | 1.75±0.1 | 8.0±0.1            | 2.0±0.1 | 4.0±0.1 | 1.5±0.1 |

| BLA                                          | NK     | CHIPS              | BLA     | NK     | LEA    | DER     |  |
|----------------------------------------------|--------|--------------------|---------|--------|--------|---------|--|
| 10 to 2                                      | Opitch |                    | 20 to 4 | 0pitch | 200 to | o 250mm |  |
| <b>•</b> • • • • • • • • • • • • • • • • • • |        |                    |         |        |        |         |  |
|                                              |        | <b>Ŀ<u></u>∎∎∎</b> |         |        |        |         |  |
|                                              | DRAWIN | G DIRECTION        |         |        |        |         |  |

기술055(을)

| aution                                                                                                          |                           | SW - Q - 01A 8 / 9                                                       |
|-----------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------|
| <ul><li>Storage Condition</li></ul>                                                                             |                           |                                                                          |
| When solderability is considera<br>(1) Temperature: 25 °C ± 10 °C<br>(2) Relative Humidity: Below 7             |                           | ended to be used in 12 months.                                           |
| The Regulation of Environment<br>Never use materials mentioned<br>Pb, Cd, Hg, Cr <sup>+6</sup> , PBB(Polybrock) | d below in MLCC product   | s regulated this document.<br>(Polybrominated diphenyl ethers), asbestos |
| Mounting Position                                                                                               |                           | [Component direction]                                                    |
| Choose a mounting position the imposed on the chip during flee board.                                           |                           | Locate chip<br>horizontal to th<br>direction in wh<br>stress acts.       |
|                                                                                                                 |                           | [Chip Mounting Close to Board Separation Point]                          |
|                                                                                                                 |                           | Perforation B<br>OCOO<br>Chip arrangen<br>Worst A-C- (B<br>Best<br>Slit  |
| Reflow Soldering                                                                                                |                           | Recommended Reflow Soldering Profile for<br>Lead Free Solder             |
| 1. The sudden temperature chang<br>damages to ceramic componer                                                  |                           |                                                                          |
| procedures should be required                                                                                   |                           | -                                                                        |
| components.                                                                                                     |                           | 250±10°C                                                                 |
| 2. Please refer to the recommend shown in figures, and keep the                                                 |                           | 200°C<br>Gradua<br>Coolin                                                |
| within the range recommended                                                                                    | •                         | 140±10°C                                                                 |
| Table 1                                                                                                         |                           | Preheating                                                               |
| Size code (EIA Code)                                                                                            | Temperature<br>Difference | 60~120 sec. 30~60 sec. Ti                                                |
| 1005~3216 (0402~1206)                                                                                           | ∆T≤190 ℃                  | Vapor Reflow                                                             |
| 3225 (1210)                                                                                                     | ∆T≤130℃                   | Temperature                                                              |
|                                                                                                                 |                           | 250±10°C                                                                 |
|                                                                                                                 |                           | ΔT Gradua<br>Coolin                                                      |
|                                                                                                                 |                           | 160±10°C                                                                 |
|                                                                                                                 |                           | 140±10°C                                                                 |
|                                                                                                                 |                           |                                                                          |
|                                                                                                                 |                           | 60∼120 sec. 20 sec. max. Ti                                              |

|                                                                    | SW - Q - 01A | 9/9 |
|--------------------------------------------------------------------|--------------|-----|
| Note                                                               |              |     |
| 'Aging'/'De-aging' behavior of high dielectric constant type MLCCs |              |     |


(Typically represented by X7R temperature characteristic of which main composition is BaTiO<sub>3</sub>)

'Aging' / 'De-aging' Behavior of high dielectric MLCCs Please note that high dielectric type dielectric ceramic capacitors have a "normal" 'aging' behavior / characteristic, that is; their capacitance value decreases with time from its value when it was first manufactured. From that date, the capacitance value begins to decrease at a logarithmic rate defined by:

#### $C_t = C_{24} (1 - k \log 10 t)$

where,

- $C_t\;$  : Capacitance value, t hours after the start of 'aging'
- $C_{24}$  : Capacitance value, 24 hours after its manufacture
- k : Aging constant (capacitance decrease per decade-hour)
- t  $\ :$  time, in hours, from the start of 'aging'



The capacitance value can be restored (also known as 'de-aged') by exposing the component to elevated temperatures approaching its curie temperature (approximately 120°C). This 'de-aging' can occur during the component's solder-assembly onto the PCB, during life or temperature cycle testing, or by baking at 150°C for about 1 hour.