NO. :

APPROVAL SHEET

MULTILAYER CERAMIC CAPACITOR

Automotive Grade (AEC-Q200 Qualified)

Approved by customer : (signing or stamping here)							

SAM	SAMWHA CAPACITOR CO., LTD.							
Prepared by Checked by Approved by								
2185	gros-	7/-						

2020. 06. 03.

SAMWHA CAPACITOR CO., LTD.

Address : 124, BUK-RI, NAMSA-MYUN YOUNGIN-SI, KYUNGKI-DO, KOREA

Contact : TEL 82-31-332-6441 , FAX 82-31-332-7661

Home page: www.samwha.com

< SPECIFICATION SUMMARY >								
SAMWHA Part no.	A Part no. CQ1608C0G681J500NRB							
Туре	MLCC for Automotive Application							
Items	Specification Unit Test Conditions							
Capacitance	680	pF	Testing Frequency: 1 ±0.1 MHz					
Capacitance Tolerance	± 5	%	Testing Voltage : 1 ±0.2 Vrms					
Dissipation Factor	Max. 0.1	%	Should be measured at 25℃.					
Insulation Resistance	Min. 100,000	MΩ	Should be measured with a DC voltage not exceeding rated voltage at 25 °C for 2 minutes of charging.					
	1.60 ±0.15	L (mm)	Conscitores Talerenes Code page 4/0					
Chip Size	0.80 ±0.10 W (mm)		Capacitance Tolerance Code page 1/9 Chip size page 2/9 Characteristics & Tost Method page 3/9 6/9					
	0.80 ±0.10	T (mm)	Characteristics & Test Method page 3/9~6/9					

Contents

General Description	1/9
Specifications and Test Methods	3/9
Packing	7/9
Caution	8/9
Note	9/9

	STANDARD	NO	SW - Q - 01A
Enactment: Feb. 1, 2010	MULTILAYER CERAMIC CAPACITOR Automotive Grade	Page	1 / 9

1. General Code

(1) Type Designation

CQ	<u>1608</u>	C0G	<u>681</u>	J	<u>500</u>	N	<u>R</u>	В
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)

- 1) Multilayer Ceramic Capacitor (Automotive Grade)
- 2) Size Code:

This is expressed in tens of a millimeter.

The first two digits are the length, The last two digits are width.

3) Temperature Coefficient Code

Classification	Code	Temperature Range	Capacitance Tolerance
Class I	C0G	-55 to +125℃	±30 ppm/℃
	X7R	-55 to +125℃	±15%
Class II	X7S	-55 to +125℃	±22%
Class II	X7T	-55 to +125℃	+22% ~ -33%
	X6S	-55 to +105℃	±22%

4) Capacitance Code(Pico farads):

The nominal Capacitance Value in pF is expressed by three digit numbers.

The first two digits represents significant figures and the last digit denotes the number of zero ex) $104 = 100000 \, \text{pF}$

R denotes decimal

8R2 = 8.2 pF

5) Capacitance Tolerance Code

Code	Tolerance		
В	± 0.1 pF		
С	± 0.25 pF		
D	± 0.5 pF		
F	± 1.0 %		

Code	Tolerance		
G	± 2.0 %		
J	± 5 %		
K	± 10 %		
M	± 20 %		

6) Voltage Code

Code	6R3	100	160	250	350	500	101	201	251	501	631	102	202	302
Rated	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC
Voltage	6.3V	10V	16V	25V	35V	50V	100V	200V	250V	500V	630V	1KV	2KV	3KV

7) Termination Code

N: Nickel-Tin Plate

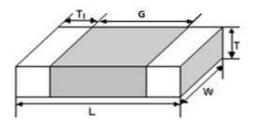
A: Nickel-Tin Plate -> Soft Termination Type

8) Packing Code

R: 7" Reel Type, L: 13" Reel Type, B: Bulk Type

9) Thickness option

Thickne	Thickness (mm)		Thickne	Code	
t	Tolerance(±)	Code	t	Tolerance(±)	Code
0.50	0.05	Blank	1.35	0.20	Н
0.60	0.10	Α	1.60	0.20	ļ
0.80	0.10	В	1.80	0.20	J
0.85	0.15	В	2.00	0.25	K
1.00	0.15	E	2.50	0.25	L
1.10	0.15	E	2.80	0.30	M
1.15	0.15	E	3.20	0.30	N
1.25	0.15	Е	5.00	0.40	0
1.30	0.20	E			


^{*3216} Size $\geq 2.2\mu F$ 100V \Rightarrow T : Tol ± 0.30

2. Temperature Characteristics

See Page 6/9 (No.21)

3. Constructions and Dimensions

(1) Dimensions

		Dimension								
Size Code	EIA Code	Length		Wie	dth	T4(min)	6 ())			
		L	Tol(±)	W	Tol(±)	T1(min.)	G(min.)			
1005	0402	1.00	0.05	0.50	0.05	0.05	0.30			
1608	0603	1.60	0.15	0.80	0.10	0.10	0.50			
2012	0805	2.00	0.20	1.25	0.15	0.10	0.65			
3216	1206	3.20	0.30	1.60	0.20	0.15	1.00			
3225	1210	3.20	0.40	2.50	0.25	0.15	1.05			
4520	1808	4.50	0.40	2.00	0.25	0.20	1.50			
4532	1812	4.50	0.40	3.20	0.30	0.20	1.50			
5750	2220	5.70	0.50	5.00	0.40	0.30	1.85			

^{*3216} Size $\geq 2.2\mu F$ 100V \Rightarrow L, W : Tol ± 0.30 (Unit: mm)

(2) Construction of Termination

SW - Q - 01A 3 / 9

Specifications and Test Methods (For Automotive Applications)

No.	AEC-Q200		Spec	cification	Test Methods and Conditions					
NO.	Test	Item	Class I	Class II	rest methods and conditions					
1	Pre-and Post-Stress Electrical Test			-	-					
		Appearance	No defects which may affect	performance						
2	High Capacitan Change Temperature Exposure Q/D.F.		Within ±2.5% or ±0.25pF (Whichever is larger) 30pF min.: Q≥1000 30pF max.: Q≥400+20×C	Within ±10.0% (*Within ±12.5%) Rated Voltage 16V min.: 0.05 max. 10V: 0.075 max.	Temperature: Max. operating temperature±3°C Maintenance Time: 1000+48/-0 hrs Let sit for 24±2 hours at room temperature, then measure.					
	(Storage)		C: Nominal Capacitance (pF)	*0.2 max.	- Local of the state of the sta					
		I.R.	More than 10,000M Ω or 500 Ω (Whichever is smaller)	.·F (*50Ω·F)						
		Appearance	No defects which may affect	performance	Perform the 1000 cycles according to the four heat treatments					
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±10.0%	listed in the following table. Let sit for 24±2 hours at room temperature, then measure.					
3	Temperature		30pF min.:Q≥1000	Rated Voltage 16V min.: 0.05 max.	Step 1 2 3 4 Temp.(°C) -55+0/-3 25±2 125+3/-0 25±2					
	Cycle	Q/D.F.	30pF max.:Q ≥ 400+20xC C: Nominal Capacitance (pF)	10V: 0.075 max. *0.2 max.	Time(min) 15±3 1 15±3 1					
		I.R.	More than 10,000M Ω or 500 Ω (Whichever is smaller)	ι -P-F (*50Ω-F)	Initial measurement Perform the initial measurement according to Note 1 for Class I					
4	Destructive Physical Anal	ysis	No defects or abnormalities		Per EIA-469					
		Appearance	No defects which may affect	performance	Temperature : 25~65°C, Humidity : 80~98% Cycle Time : 24 hrs/cycle, 10 cycles					
		Capacitance Change	Within ±3.0% or±0.30pF (Whichever is larger)	Within ±12.5%	Let sit for 24±2 hours at room temperature, then measure.					
5	Moisture Resistance	Q/D.F.	30pF min.: Q≥350 10pF min. and 30pF max.: Q≥275+5/2×C 10pF max.: Q≥200+10×C C: Nominal Capacitance (pF) More than 10,000MΩ or 500Ω	Rated Voltage 16V min.: 0.05 max. 10V: 0.075 max. *0.2 max.	70					
		I.R.	(Whichever is smaller)	(30221)	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hrs)					
		Appearance	No defects which may affect	performance						
		Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within ±12.5%	Temperature: 85±3°C Humidity: 80~85%					
6	Biased Humidity	Q/D.F.	30pF min.: Q≥200 30pF max.: Q≥100+10/3xC C: Nominal Capacitance (pF)	Rated Voltage 16V min.: 0.05 max. 10V: 0.075 max. *0.2 max.	Applied Voltage: Rated Voltage and 1.3+0.2/-0V Maintenance Time: 1000+48/-0 hrs Let sit for 24±2 hours at room temperature, then measure.					
		I.R. More than 1,000MΩ or 50Ω ·F (* 5Ω ·F) (Whichever is smaller)		(*5Ω·F)	The charge/discharge current is less than 50mA.					
		Appearance	No defects which may affect	performance	T					
		Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within ±12.5%	Temperature : Max. operating temperature±3°C Applied Voltage : Rated Voltage × 200% (*150%) Maintenance Time : 1000+48/-0 hrs					
7	Operational Life	Q/D.F.	30pF min.:Q≥350 10pF min. and 30pF max.: Q≥275+5/2×C 10pF max.: Q≥200+10×C C: Nominal Capacitance (pF)	Rated Voltage 16V min.: 0.05 max. 10V: 0.075 max. *0.2 max.	Let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. Initial Measurement for Class II Applied 200% of the rated voltage for one hour at 125±3°C. Remove and let sit for 24±2 hours at room temperature, then					
	More than 1,000MΩ or 50Ω·F (*5Ω·F)		More than 1,000M Ω or 50 Ω ·F (Whichever is smaller)	(*5Ω·F)	measure.					

SW - Q - 01A 4 / 9

Specifications and Test Methods (For Automotive Application)

	AEC-	·Q200	Specif	ication		Total Model of Lance I Complete and				
No.		Item	Class I	Class	II	Test Methods and Conditions				
8	External Visua	al	No defects or abnormalities			Visual inspection				
9	Physical Dime	ension	Within the specified dimensions			Using calipers				
		Appearance	No defects which may affect p	erformance						
		Capacitance Change	Within the specified tolerance							
10	Resistance to Solvents Q/D.F.		30pF min.: Q≥1000 30pF max.: Q≥400+20xC C: Nominal Capacitance (pF)	16V: (10V: (*0.125 max.	0.025 max. 0.03 max. 0.035 max. 0.05 max.	Per MIL-STD-202 Method 215				
		I.R.	More than 10,000M Ω or 500 Ω -F (Whichever is smaller)	` (*50Ω·F)						
		Appearance	No defects which may affect p	erformance						
		Capacitance Change	Within the specified tolerance			Three shocks in each direction should be applied along 3 mutually perpendicular axes of the test specimen (18 shocks)				
11	Mechanical Shock	Q/D.F.	30pF min.:Q≥1000 30pF max.:Q≥400+20xC C: Nominal Capacitance (pF)	16V: (0.025 max. 0.03 max. 0.035 max. 0.05 max.	Test Pulse Wave form : Half-sine Duration : 0.5ms Peak value : 1,500G				
		I.R.	More than $10,000M\Omega$ or 500Ω -F (Whichever is smaller)			Velocity change : 4.7m/s				
		Appearance	No defects or abnormalities							
		Capacitance Change	Within the specified tolerance			The specimens should be subjected to a simple harmonic motion				
12			30pF min.:Q≥1000 30pF max.:Q≥400+20xC C: Nominal Capacitance (pF)	16V: (0.025 max. 0.03 max. 0.035 max. 0.05 max.	having a total amplitude of 1.5mm. The entire frequency range of 10 to 2,000 Hz and return to 10 Hz should be traversed in 20 minutes. This cycle should be performed 12 times in each of three mutually perpendicular directions (total of 36 times).				
		I.R.	More than 10,000M Ω or 500 Ω -F (Whichever is smaller)							
		Appearance	No defects which may affect p	erformance						
		Capacitance Change	Within the specified tolerance			Temperature (Eutectic solder solution) : 260±5°C				
13	Resistance to Soldering Heat	Q/D.F.	30pF min.:Q≥1000 30pF max.:Q≥400+20xC C: Nominal Capacitance (pF)	16V:	0.025 max. 0.03 max. 0.035 max. 0.05 max.	Dipping Time: 10±1s Let sit for 24±2 hours at room temperature, then measure. Initial measurement Perform the initial measurement according to Note 1 for Class II.				
		I.R.	More than 10,000M Ω or 500 Ω -F (Whichever is smaller)	han 10,000MΩ or 500Ω·F (*50Ω·F)		-				
		Appearance	No defects which may affect p	erformance		Perform the 300 cycles according to the two heat treatments listed				
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±15.0%		in the following table. Transfer Time: 20sec. max.				
14	Thermal Shock	Q/D.F.	30pF min.:Q≥1000 30pF max.:Q≥400+20xC C: Nominal Capacitance (pF)	16V: (0.025 max. 0.03 max. 0.035 max. 0.05 max.	Let sit for 24±2 hours at room temperature, then measure. Step 1 2 Temp.(°C) -55+0/-3 125+3/-0 Time(min.) 15±3 15±3				
		I.R.	$^*0.125$ max. More than $10,000$ MΩ or 500 Ω·F (*50 Ω·F) (Whichever is smaller)			Initial measurement Perform the initial measurement according to Note 1 for Class II.				

Specifications and Test Methods (For Automotive Application)

ΤĖ	o. AEC-Q200 Test Item		· · · · · · · · · · · · · · · · · · ·	ication				Ī		
No.			Class	Class II	Test Methods and Conditions					
		Appearance	No defects which may affect pe	erformance						
		Capacitance	Within the specified tolerance							
		Change		Rated Voltage 50V: 0.025 max.	-					
	F0D		30pF min.:Q≧1000 25V: 0.03 max.		D 450 0000					
15	15 ESD Q/D.F		30pF max.:Q≧400+20×C	Per AEC-Q200	-002					
			C: Nominal Capacitance (pF)	10V: 0.05 max.						
				*0.125 max.						
		I.R.	More than $10,000M\Omega$ or 500Ω ·F	(*50Ω·F)						
			(Whichever is smaller)		(a) Droboot at 1	155°C for 4 bours	and than immor	as the conscitor		
						155 $℃$ for 4 hours, and ros		1		
						5+0/-0.5 seconds a		cutcotto soluci		
						g for 8 hours, and t		ne capacitor in a		
16	Solderability		95% of the terminations is to be s	oldered evenly and continuously.	1, ,	ethanol and rosin. In				
	,			, ,	solution for s	5+0/-0.5 seconds a	at 235±5℃.			
					(c) Steam aging	g for 8 hours, and t	hen immerse th	ne capacitor in a		
					solution of e	ethanol and rosin. In	mmerse in eute	ctic solder		
					solution for	120±5 seconds at 2	260±5℃.			
		Appearance	No defects or abnormalities			ce/Q/D.F. should be		25℃ at the		
		Capacitance			frequency and voltage shown in the table.					
		Change	Within the specified tolerance		Class	Capacitance (C)	Frequency	Voltage		
					Class I	C<1000pF C≥1000pF	1±0.1MHz 1±0.1kHz	0.5~5Vrms 1±0.2Vrms		
						C≤10µF	1±0.1kHz	0.5~1.0Vrms		
				Rated Voltage 50V: 0.025 max.	Class II	C>10µF	120±24Hz	0.5±0.1Vrms		
			30pF min.:Q≧1000	25V: 0.03 max.	· Initial measu					
	Electrical	Q/D.F. trical	30pF max.:Q ≥ 400+20×C	16V: 0.035 max.	Perform the initial measurement according to Note1 for Class II					
17	Characteriza-		C: Nominal Capacitance (pF)	10V: 0.05 max.	_		SS II			
	tion			*0.125 max.	Measuremer Take it out	and set it for 2	4±2 hours (C	Class II)		
					then measur		(0	,		
			More than $100,000M\Omega$ or $1,000\Omega$ ·F	More than 10,000MΩ 500Ω-F						
		I.R. at 25℃	(Whichever is smaller)	(*50Ω·F) (Whichever is smaller)	Should be mea	sured with a DC vo	oltage not exce	edina rated		
		I.R. at	More than $10,000M\Omega$ or 100Ω -F	More than 1.000MΩ or 10Ω·F	Should be measured with a DC voltage not exceeding rated voltage at 25°C and 125°C for 2 minutes of charging. Applied 250% of the rated voltage for 1~5 seconds					
		125℃	(Whichever is smaller)	(*1Ω·F) (Whichever is smaller)						
		Dielectric								
		Strength	No dielectric breakdown or mecha	anical breakdown	The charge/discharge current is less than 50mA.					
					Apply a force in	the direction show	vn in the followi	ng figure for		
				,	60±5 seconds.					
		Appearance	No defects which may affect pe	ertormance	Support	Solder Chip	Printed circu	it board before testing		
					4	Vanitary.				
					1 1	45±2	45±2	Y		
					1=-					
18	Board Flex					20	Probe to exert	bending force		
					1	2-1-240	Speed: 1.0	mm/s		
			Within ±5.0% or ±0.5pF	Within the specified tolerance	1.6	Radius 340	ν			
		Change	(Whichever is larger)	· · · · · · · · · · · · · · · · · · ·	7	Noning to the second		0 0		
					Printed circuit bos	ard under test		Displacement		
								Displacement —		
					Flexure for Class I: 3mm max.					
-		Annograns	No defeate which may offer to	or formance.		Class II: 2mm max				
19	Terminal	• • • • • • • • • • • • • • • • • • • •	No defects which may affect pe	er rorillance		ce in parallel with tl EIA:0603) size	ne test jig for 60	J±1 seconds.		
19	Strength	1 -	Within ±5.0% or ±0.5pF	Within the specified tolerance	1	EIA:0603) size EIA:0402) size				
<u> </u>		Change	(Whichever is larger)			_,, 1.0-102/ 3126				

SW - Q - 01A

6 / 9

Specifications and Test Methods (For Automotive Application)

Test		The chip endure follow	wing force.		Class	1e	st wet	hods a	na Con	aitions	5
3eam Load T∈	est										
Beam Load Te	est	Chip Length	Thickne			,	Apply a force as shown in the following figure.				
Beam Load Te	est		THORIN	ess (T) Force		(i) Chip Length		,	ii) Chip Le	•	
Beam Load Te	est	2.5mm max.	T≤0.	5mm	8N	Beam Speed	d : 0.5mr	n/s	Beam S	speed : 2.	omm/s
		2.5mm max.	T>0.5mm		20N						
		3.2mm min.	T<1.2	25mm	15N		Iro	n Board			
		3.211111 111111.	T≥1	1.25 54.5N		0.6					
Capacitance Femperature Characteris- ics	Capacitance Change Temperature Coefficient Capacitance Drift	0±30 ppm/℃		X7R: Wit X7S: Witl X6S: Witl X7T: Witl	hin ±22%	measured in ste sequentially from within the specion The capacitance between the ma 1, 3 and 5 by th Step Temp.(°C) (ii) Class II The ranges of cover the temper Initial measurer	The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in steps 1, 3 and 5 by the capacitance value in step 3. Step 1 2 3 4 5 Temp.(°C) 25±2 -55±3 25±2 125±3 25±2 (ii) Class II The ranges of capacitance change compared with the 25 °C value over the temperature range from -55 °C to 125 °C.				
Γe Cł	emperature naracteris-	coefficient Coeffi	coefficient 0±30 ppm/°C Coefficient 0±30 ppm/°C Capacitance Demonstrates Capacitance Within ±0.2% or ±0.05	coefficient O±30 ppm/°C Coefficient O±30 ppm/°C Capacitance D±30 ppm/°C Capacitance D±30 ppm/°C Within ±0.2% or ±0.05pF	Temperature Coefficient 0±30 ppm/°C capacitance Capacitance Within ±0.2% or ±0.05pF	Temperature Coefficient 0±30 ppm/°C capacitance Capacitance Within ±0.2% or ±0.05pF	Temperature Coefficient Temperature Coefficient 0±30 ppm/°C Step Temp.(°C) (ii) Class II The ranges of cover the temperature (Whichever is larger)	Temperature Coefficient Temperature Coefficient 0±30 ppm/°C Step 1 Temp.(°C) 25±2 (ii) Class II The capacitance drift is between the maximum at 1, 3 and 5 by the capacitance of t	Temperature Coefficient O±30 ppm/°C O±30 ppm/°C Temperature Coefficient O±30 ppm/°C O±30 ppm/°C O±30 ppm/°C Step 1 2 Temp.(°C) 25±2 -55±3 (ii) Class II The capacitance drift is calculated between the maximum and minim 1, 3 and 5 by the capacitance value of the	Temperature Coefficient O±30 ppm/°C Temperature Coefficient O±30 ppm/°C Step 1 2 3 Tempe.(°C) 25±2 -55±3 25±2 (ii) Class II The ranges of capacitance change compare over the temperature solution over the temperature over the temperature solution over the temperature over the temperature solution of the	Temperature Coefficient O±30 ppm/°C Temperature Coefficient O±30 ppm/°C O±30 ppm/°C The capacitance drift is calculated by dividing the difference of the temperature between the maximum and minimum measured value 1, 3 and 5 by the capacitance value in step 3. Step 1 2 3 4 Temp.(°C) 25±2 -55±3 25±2 125±3 (ii) Class II The capacitance value in step 3. Step 1 2 3 4 Temp.(°C) 25±2 -55±3 25±2 125±3 (iii) Class II The ranges of capacitance change compared with the over the temperature range from -55 °C to 125 °C.

In the case of "*" is specifications for "Thin Layer Large Capacitance Type"

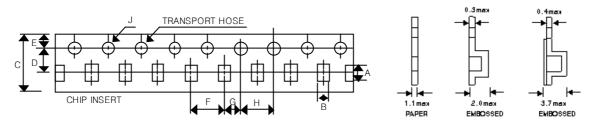
Note 1. Initial Measurement for Class II

Perform a heat treatment at 150+0/-10°C for one hour, and then let sit for 24±2 hours at room temperature, then measure.

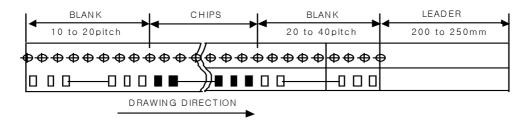
(Unit: mm)

Packing

- (1) Bulk Packing
 - 1 1000 pcs per polybag
 - ② 5 polybags per inner box
 - 3 10 inner boxes per out box
- (2) Reel Packing
 - ① 8~10 reels per inner box
 - 2 6 inner boxes per out box
- (3) Reel Dimensions



Mark	Size Code	EIA Code	Α	В	С	D	Е	w
7 " Reel	1005~3225	0402~1210	Ф178±2	Ф 50Min	Ф13±0.5	Ф21±0.8	2±0.5	10±1.5
7 11001	4520~4532	1808~1812	Ф180+0,-3	Ф60-0,+1	Ф13±0.2	Ф57-0+1	3±0.2	13±0.5
13 " Reel	1005~3225	0402~1210	Ф330±2	Φ 70Min	Ф13±0.5	Ф21±0.8	2±0.5	10±1.5


(4) Number of Package

Size Code	EIA Code	7"	13"
Size Code	EIA Code	Quantity(pcs)/Reel	Quantity(pcs)/Reel
1005	0402	10,000	50,000
1608	0603	4,000	15,000
2012	0805	3,000 ~ 4,000	8,000 ~ 15,000
3216	1206	2,000 ~ 4,000	6,000 ~ 10,000
3225	1210	1,000 ~ 3,000	4,000 ~ 10,000
4520	1808	1,500 ~ 3,000	-
4532	1812	500 ~ 1,000	1,500 ~ 5,000

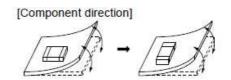
(5) Tape Dimensions

Size Code	EIA Code	А	В	С	D	E	F	G	Н	J
1005	0402	1.15±0.1	0.65±0.1	8.0±0.3	3.5±0.05	1.75±0.1	2.0±0.05	2.0±0.1	4.0±0.1	1.5±0.1
1608	0603	1.9±0.2	1.10±0.2	8.0±0.3	3.5±0.05	1.75±0.1	4.0±0.1	2.0±0.1	4.0±0.1	1.5±0.1
2012	0805	2.4±0.2	1.65±0.2	8.0±0.3	3.5±0.05	1.75±0.1	4.0±0.1	2.0±0.1	4.0±0.1	1.5±0.1
3216	1206	3.6±0.2	2.00±0.2	8.0±0.3	3.5±0.05	1.75±0.1	4.0±0.1	2.0±0.1	4.0±0.1	1.5±0.1
3225	1210	3.6±0.2	2.80±0.2	8.0±0.3	3.5±0.05	1.75±0.1	4.0±0.1	2.0±0.1	4.0±0.1	1.5±0.1
4520	1808	4.8±0.2	2.3±0.2	12.0±0.3	5.5±0.1	1.75±0.1	4.0±0.1 8.0±0.1	2.0±0.1	4.0±0.1	1.5±0.1
4532	1812	4.9±0.2	3.6±0.2	12.0±0.3	5.5±0.1	1.75±0.1	8.0±0.1	2.0±0.1	4.0±0.1	1.5±0.1

Caution

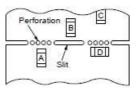
► Storage Condition

When solderability is considered, capacitor are recommended to be used in 12 months.


(1) Temperature: 25° C ± 10° C

(2) Relative Humidity: Below 70% RH

▶ The Regulation of Environmental Pollution Materials Never use materials mentioned below in MLCC products regulated this document. Pb, Cd, Hg, Cr⁺⁶, PBB(Polybrominated biphenyl), PBDE(Polybrominated diphenyl ethers), asbestos


▶ Mounting Position

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

Locate chip horizontal to the direction in which stress acts.

[Chip Mounting Close to Board Separation Point]

Chip arrangement Worst A-C- (B, D) Best

► Reflow Soldering

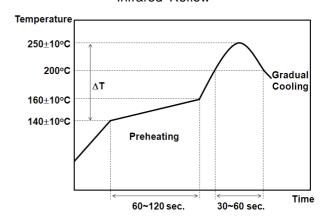
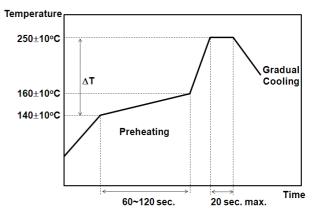

- 1. The sudden temperature change easily causes mechanical damages to ceramic components. Therefore, the preheating procedures should be required for the soldering of ceramic components.
- 2. Please refer to the recommended soldering profiles as shown in figures, and keep the temperature difference($\triangle T$) within the range recommended in Table 1.

Table 1


Size code (EIA Code)	Temperature Difference		
1005~3216 (0402~1206)	△T≤190℃		
3225 (1210)	△T≤130°C		

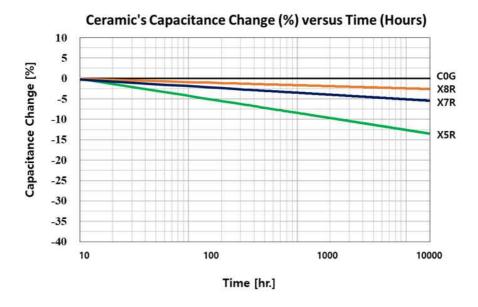
Recommended Reflow Soldering Profile for Lead Free Solder

Infrared Reflow

Vapor Reflow

Note

▶ 'Aging'/'De-aging' behavior of high dielectric constant type MLCCs (Typically represented by X7R temperature characteristic of which main composition is BaTiO₃)


'Aging' / 'De-aging' Behavior of high dielectric MLCCs Please note that high dielectric type dielectric ceramic capacitors have a "normal" 'aging' behavior / characteristic, that is; their capacitance value decreases with time from its value when it was first manufactured. From that date, the capacitance value begins to decrease at a logarithmic rate defined by:

$$C_t = C_{24} (1 - k log 10 t)$$

where,

Ct : Capacitance value, t hours after the start of 'aging' C₂₄ : Capacitance value, 24 hours after its manufacture : Aging constant (capacitance decrease per decade-hour)

: time, in hours, from the start of 'aging'

The capacitance value can be restored (also known as 'de-aged') by exposing the component to elevated temperatures approaching its curie temperature (approximately 120°C). This 'de-aging' can occur during the component's solder-assembly onto the PCB, during life or temperature cycle testing, or by baking at 150°C for about 1 hour.